

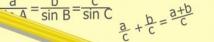
THITHITHITH

105 0 00

• Логарифмическая функция в заданиях 12 ЕГЭ

Найдите наибольшее значение функции $y = \log_{\frac{1}{2}}(x^2 - 2x - 9)$ Решение.

Поскольку исходная логарифмическая функция убывающая, т.к. $a = \frac{1}{2} < 1$, функция принимает наибольшее значение при наименьшем значении $(x^2 - 2x - 9)$


Функция принимает наибольшее значение при $\frac{x_b = 1}{}$, т.е.

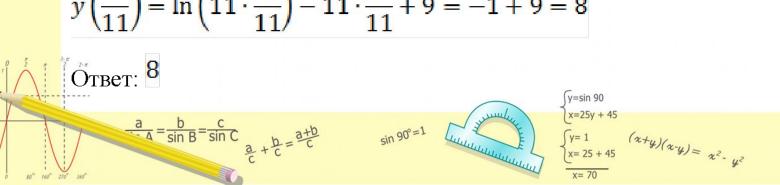
$$y = \log_{\frac{1}{2}}(1^2 - 2 \cdot 1 - 9) = \log_{\frac{1}{2}}8 = -3$$

Otbet: -3.

Натуральный логарифм в задачах на нахождение наибольшего и наименьшего значений функций

Найти наибольшее значение функции $y = \ln(11x) - 11x + 9$ на отрезке $\left[\frac{1}{22}; \frac{5}{22}\right]$

Решение.


Все значения $\frac{\ln(11x)}{\ln(11x)}$ на своей области определения являются бесконечными

 $11x = 1, x = \frac{1}{11} \in \left[\frac{1}{22}; \frac{5}{22}\right]$ десятичными дробями, кроме $\ln 1 = 0$, поэтому

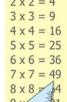
десятичными дробями, кроме
$$\ln 1 = 0$$
, поэтому $11x - 1, x - 1$ $11 - 1, x - 1$

Поэтому исходная функция принимает наибольшее значение при

 $y\left(\frac{1}{11}\right) = \ln\left(11 \cdot \frac{1}{11}\right) - 11 \cdot \frac{1}{11} + 9 = -1 + 9 = 8$

• Нахождение наибольшего и наименьшего значения функции, содержащих экспоненту.

Найти наименьшее значение функции $y = (x - 8) \cdot e^{x - 7}$ на отрезке [6; 8].


Решение.

Так как все значения e^{x-7} при любом x, кроме x=7, являются десятичными бесконечными дробями, а должны получить либо целое число, либо конечную десятичную дробь, то решение исходной задачи будет достигаться при $x=7 \in [6;8]$.

$$y(7) = (7-8) \cdot e^{7-7} = -1 \cdot 1 = -1$$

Ответ: -1

