
Состав углеродистых сталей

УГЛЕРОДИСТАЯ СТАЛЬ – ТЯЖЕЛОВОЗ ПРОМЫШЛЕННОСТИ

Углеродистые стали являются основной продукцией черной металлургии. В мире изготавливается приблизительно 85% углеродистой стали и 15% легированной.

Состав и свойства углеродистых сталей определяются следующими стандартами:

- ✔ ГОСТ 380-2005. Сталь углеродистая обыкновенного качества
- ✓ ГОСТ 1050-88. Сталь углеродистая качественная конструкционная.

Кроме углерода обычные углеродистые стали содержат постоянные примеси: 0.3-0.8 % Mn, до 0.60 % Si, до 0.05 % S, до 0.04 % P.

Обычно углеродистые стали содержат в сумме до 2 % всех легирующих элементов и примесей.

Однако решающее влияние на формирование их структуры и свойств оказывает углерод.

ПОСТОЯННЫЕ ПРИМЕСИ В СТАЛИ

Полезными примесями являются марганец и кремний.

- □ Марганец и кремний вводятся в процессе выплавки стали для ее раскисления, они являются технологическими примесями.
- □ Содержание марганца не превышает 0,5...0,8 %. Марганец повышает прочность, не снижая пластичности, и резко снижает красноломкость стали, вызванную влиянием серы.
 Он способствует уменьшению содержания сульфида железа FeS, так как образует с серой соединение сульфид марганца MnS.
- □ Содержание кремния не превышает 0,6 %. Кремний, дегазируя металл, повышает плотность слитка. Кремний растворяется в феррите и повышает прочность стали, особенно повышается предел текучести, при этом наблюдается некоторое снижение пластичности.

Постоянные примеси в стали

Вредными примесями являются сера и фосфор.

- □ Фосфор содержится в стали в количестве не более 0,025...0,07 %. Фосфор, растворяясь в феррите, искажает кристаллическую решетку и увеличивает предел прочности и предел текучести, но снижает пластичность и вязкость. Располагаясь вблизи границ зерен, увеличивает температуру перехода в хрупкое состояние, вызывает хладноломкость. Повышение содержания фосфора на каждую 0,01 % повышает порог хладноломкости на 20...25 °C.
- □ Содержание серы в сталях не более 0,025...0,05 %. Сера вредная примесь, попадает в сталь из чугуна. При взаимодействии с железом образует химическое соединение сульфид железа FeS, которое, в свою очередь, образует с железом легкоплавкую эвтектику с температурой плавления 988 °C. При нагреве под прокатку или ковку эвтектика плавится, нарушаются связи между зернами. При деформации в местах расположения эвтектики возникают надрывы и трещины, заготовка разрушается наблюдается явление красноломкости.

Красноломкость – повышение хрупкости при высоких температурах. Сера снижает механические свойства, особенно ударную вязкость КСИ и пластичность (δ), а также предел выносливости. Она ухудшает свариваемость и коррозионную стойкость.

КЛАССИФИКАЦИЯ УГЛЕРОДИСТЫХ СТАЛЕЙ

По структуре:

- доэвтектоидные (до 0,8 % C);
- эвтектоидные (0,8 % C);
- заэвтектоидные (более 0,8 % C).

По содержанию углерода:

- низкоуглеродистые (до 0,25 % C);
- среднеуглеродистые (0,3–0,6 % C);
- высокоуглеродистые (> 0,60 % C).

Требования к конструкционным сталям

Конструкционные стали должны обладать высокой конструкционной прочностью, обеспечивать длительную и надежную работу конструкций в условиях эксплуатации.

Материалы должны быть вязкими и хорошо сопротивляться ударным нагрузкам.

При знакопеременных нагрузках должны обладать высоким сопротивлением усталости, а при трении — сопротивлением износу.

Конструкционные стали должны иметь высокие технологические свойства:

- □ хорошие литейные свойства;
- □ обрабатываемость давлением;
- □ обрабатываемость резанием;
- □ хорошую свариваемость.

УГЛЕРОДИСТЫЕ СТАЛИ ОБЫКНОВЕННОГО КАЧЕСТВА, ГОСТ 380-2005

- Выпускаются в виде проката и поковок (прутки, балки, листы, уголки, трубы и т.д.).
- В зависимости от назначения и комплекса свойств подразделяются на три группы: A, Б, В.
- Стали маркируются сочетанием букв Ст и цифрой от 0 до 6, показывающей условный номер марки.
 С повышением номера содержание углерода в стали увеличивается, растет прочность и снижается пластичность
- Стали групп Б и В имеют перед маркой буквы Б и В, группа А в обозначении марки не указывается.

МЕХАНИЧЕСКИЕ СВОЙСТВА УГЛЕРОДИСТЫХ СТАЛЕЙ ОБЫКНОВЕННОГО КАЧЕСТВА ГРУППЫ А

Стали группы А поставляются с гарантированными механическими свойствами, без указания химического состава. Их используют в состоянии поставки для изделий, изготовление которых не сопровождается горячей обработкой давлением, сваркой или термической обработкой.

Сталь	σ _в , MΠa	$σ_τ$, ΜΠ a	δ, %	Сталь	σ₃, МПа	σ _τ , MΠa	δ, %
		не ме	нее			не ме	нее
Ст0	>310	_	23	Ст4	420—540	240—270	24
Ст1	320-420	_	34	Ст5	500640	260290	20
Ст2	340440	200—230	32	Ст6	600	320	13
Ст3	380490	210—250	27				

ХИМИЧЕСКИЙ СОСТАВ УГЛЕРОДИСТЫХ СТАЛЕЙ ОБЫКНОВЕННОГО КАЧЕСТВА ГРУППЫ Б

Стали группы Б поставляют с гарантированным химическим составом. Их применяют для изделий, изготавливаемых путем горячей обработки (прокат, ковка, термическая обработка), при которой структура и свойства не сохраняются.

Для таких сталей важно знать химический состав для правильного определения режима горячей обработки.

Сталь	С	Mn	Si в стали			S	P
			кп	пс	сп	не (более
БСт0	< 0,23	_	_		_	0,06	0,07
БСт1	0,06-0,12	0,25—0,5	0,05	0,05—0,17	0,120,3	0,05	0,04
БСт2	0,09—0,15	0,250,5	0,05	0,05-0,17	0,12-0,3	0,05	0,04
БСт3	0,140,22	0,300,65	0,07	0,05-0,17	0,12-0,3	0,05	0,04
БСт4	0,180,27	0,400,70	0,07	0,05—0,17	0,12-0,3	0,05	0,04
БСт5	0,280,37	0,500,80	_	0,05-0,17	0,15—0,35	0,05	0,04
БСт6	0,380,49	0,500,80		0,050,17	0,15—0,35	0,05	0,04

УГЛЕРОДИСТЫЕ СТАЛИ ОБЫКНОВЕННОГО КАЧЕСТВА ГРУППЫ В

Стали группы В поставляются с гарантированными механическими свойствами и химическим составом.

Их применяют для производства сварных конструкций. Поэтому сведения о химическом составе важны для оценки свариваемости, а исходные механические свойства необходимо знать, т. к. они сохраняются неизменными в участках, не подвергаемых нагреву при сварке.

Недостатки углеродистых сталей обыкновенного качества:

- невысокая прочность ов ≤ 600 МПа;
- недостаточная хладостойкость (склонность к хрупкому разрушению при минусовых температурах).

УГЛЕРОДИСТЫЕ КАЧЕСТВЕННЫЕ СТАЛИ, ГОСТ 1050-88

Имеют более низкое содержание вредных примесей и неметаллических включений, чем стали обыкновенного качества. Поставляются в виде проката, поковок, профилей различного назначения с гарантированным химическим составом и механическими свойствами.

Маркируются эти стали двузначными цифрами 05, 08, 10, 15, 20...85, обозначающими среднее содержание углерода в сотых долях процента. Например, сталь 15 содержит 0,15% С.

Низкоуглеродистые стали пластичны, хорошо свариваются и штампуются. Их производят в виде тонкого листа для изготовления деталей сложной формы методом холодной штамповки с глубокой вытяжкой.

Для увеличения поверхностной прочности изделия из них подвергают цементации (*цементация - насыщение поверхностного слоя углеродом*), при этом резко возрастает износостойкость изделий, а сердцевина остается пластичной и вязкой.

ХИМИЧЕСКИЙ СОСТАВ И МЕХАНИЧЕСКИЕ СВОЙСТВА УГЛЕРОДИСТЫХ КАЧЕСТВЕННЫХ СТАЛЕЙ, ГОСТ 1050-88

Марка	Содержание	Хром,	Механические свойства, не менее					
стали	углерода, %	не более	σ₃, МПа	στ, МПа	δ, %	ψ,%	КСU ⁺²⁰ , МДж/м ²	НВ после от- жига или вы- сокого отпус- ка, не более
08	0,05-0,01	0,10	330	200	33	60		131
10	0,07—0,14	0,15	340	210	31	55		143
15	0,12-0,19	0,25	380	230	27	55		149
20	0,17-0,24	0,25	420	250	25	55		163
30	0,270,35	0,25	500	300	21	50	0,8	179
40	0,370,45	0,25	580	340	19	45	0,6	217
50	0,47—0,55	0,25	640	380	14	40	0,4	241
60	0,57—0,65	0,25	690	410	12	35	_	255
70	0,67—0,75	0,25	730	430	9	30	<u> </u>	269

СРЕДНЕ- И ВЫСОКОУГЛЕРОДИСТЫЕ КАЧЕСТВЕННЫЕ СТАЛИ И СТАЛИ С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ МАРГАНЦА

<u>Среднеуглеродистые стали</u> 30, 35, 40, 45, 50 и аналогичные стали с повышенным содержанием марганца 30Г, 40Г, и 50Г имеют повышенную прочность, но меньшую пластичность и вязкость.

После упрочняющей термической обработки эти стали применяют для изготовления небольших валов, шатунов, зубчатых колес и деталей, испытывающих циклические нагрузки.

Высокоуглеродистые стали 60, 65, 70, 75, 80 и 85, а также аналогичные стали с повышенным содержанием марганца 60Г, 65Г, и 70Г используют для изготовления пружин, рессор и других изделий с высокой упругостью и износостойкостью.

УГЛЕРОДИСТЫЕ ИНСТРУМЕНТАЛЬНЫЕ СТАЛИ

Инструментальные стали предназначены для изготовления режущего, измерительного и штампового инструмента. Требуемые свойства — износостойкость и теплостойкость.

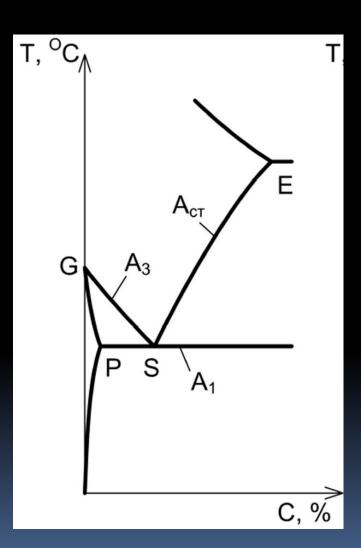
Углеродистые инструментальные стали являются наиболее дешевыми. Они содержат от 0,7 до 1,3% С. Их применяют для изготовления малоответственного мелкого режущего инструмента и штамповой оснастки регламентированного размера.

При нагреве выше 200°С твердость этих сталей резко снижается, поэтому инструмент из них пригоден для обработки сравнительно мягких материалов (дерева) при небольших скоростях резания.

Стали маркируются сочетанием букв У (углерод) и цифрой, показывающей содержание углерода в десятых долях процента. Например, сталь У13 содержит 1,3% С.

Механические свойства инструментальной нелегированной термически обработанной металлопродукции из стали

Марка стали	Твердость, НВ, не менее	Временное сопротивление разрыву Ов, МПа
У7, У7А, У8, У8Г	187	650
У11, У11А, У12, У12А	212	750


ТЕРМИЧЕСКАЯ ОБРАБОТКА СТАЛЕЙ

<u>Термическая обработка</u> – это совокупность операций нагрева, выдержки и охлаждения твердых металлических сплавов с целью получения заданных свойств за счет изменения внутреннего строения и структуры.

Термическая обработка используется:

- □ либо в качестве *промежуточной* технологической операции для улучшения обрабатываемости заготовок давлением или резанием;
- либо как *окончательная* операция технологического процесса, обеспечивающая заданный уровень физикомеханических свойств детали.

СТАЛЬНОЙ УГОЛ ДИАГРАММЫ ЖЕЛЕЗО-ЦЕМЕНТИТ С ОБОЗНАЧЕНИЕМ КРИТИЧЕСКИХ ТОЧЕК

Наличие в сталях фазовых превращений в твердом состоянии обусловливает возможность проведения для них всех видов термической обработки (это отжиг, нормализация, закалка и отпуск).

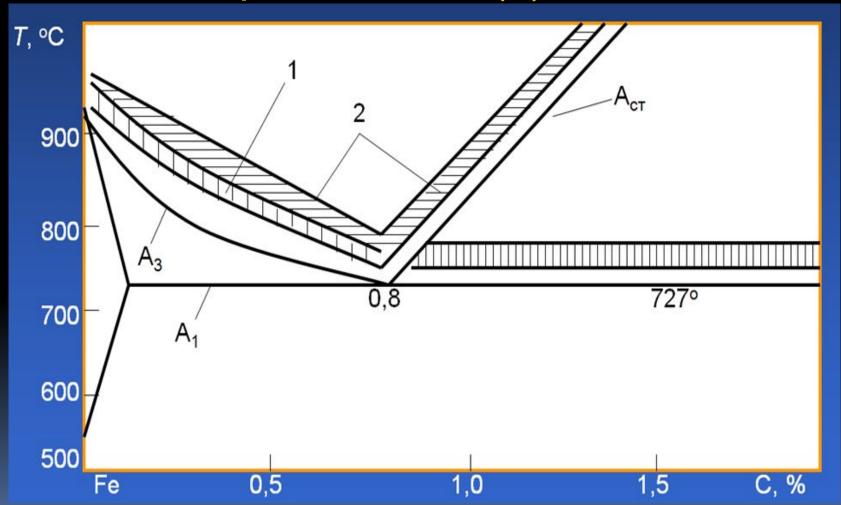
Температуры наиболее важных фазовых превращений на диаграмме или критические точки обозначают буквой A с соответствующими индексами:

 A_1 – линия PSK,

А3 - линия GS,

Aст — линия ES

ОСНОВНЫЕ ВИДЫ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЕЙ. ОТЖИГ.


Отжиг – термическая обработка, заключающаяся в нагреве металла, находящегося в *неравновесном* состоянии в результате предшествующей обработки, и приводящая его в более равновесное состояние.

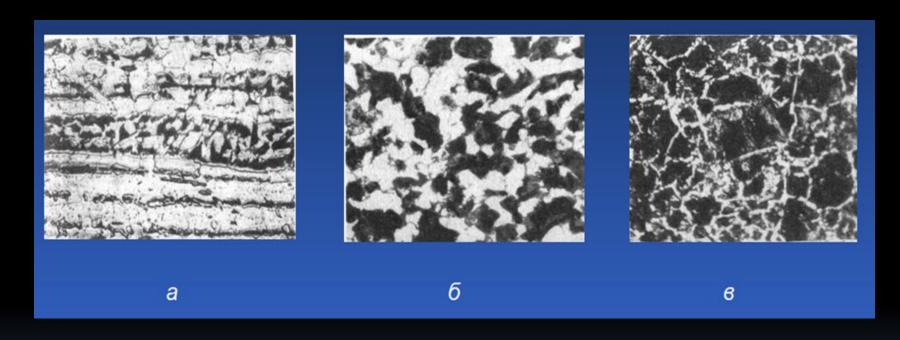
Охлаждение после отжига всегда <u>медленное</u> (с печью). Различают:

- Отжиг первого рода при котором нагрев проводится ниже температур фазовых превращений. Его цель устранение химической неоднородности, уменьшение внутренних напряжений.
- □ Отжиг второго рода при котором нагрев проводится выше температур фазовых превращений. Его цель получение структурно равновесного состояния.

Отжиг II рода применяют для получения равновесной структуры в целях снижения твердости, повышения пластичности и вязкости стали; улучшения обрабатываемости; измельчения зерна.

Интервал температуры нагрева при отжиге II рода (1) и нормализации (2) сталей

ОСНОВНЫЕ ВИДЫ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЕЙ. НОРМАЛИЗАЦИЯ.


Нормализация - нагрев доэвтектоидной стали до температуры, превышающей точку A3 на 40...50°C, заэвтектоидной стали - до температуры выше критической точки Aст также на 40...50°C (выше линии GSE), в непродолжительной выдержке для завершения фазовых превращений и <u>охлаждении на воздухе.</u>

<u>Цель нормализации</u> - получение в стали мелкозернистой однородной структуры, улучшение обрабатываемости резанием, устранение наклепа после обработки резанием и подготовки структуры к последующей закалке.

Углеродистые стали после нормализации несколько прочнее, чем после отжига. Их пластичность при этом немного ниже максимально возможной.

Так как при производстве деформированных полуфабрикатов (прутков, уголков, швеллеров, листов, полос и др.) их охлаждение после деформации происходит на воздухе, то структура и свойства таких полуфабрикатов соответствуют нормализованному состоянию, что обычно указывается в справочниках.

Структуры до и после отжига и нормализации сталей

- а строчечная структура конструкционной углеродистой стали 40, х250;
- 6 микроструктура стали (0,4 % C) после отжига, х300;
- B-микроструктура стали (0,4 % C) после нормализации, <math>x300

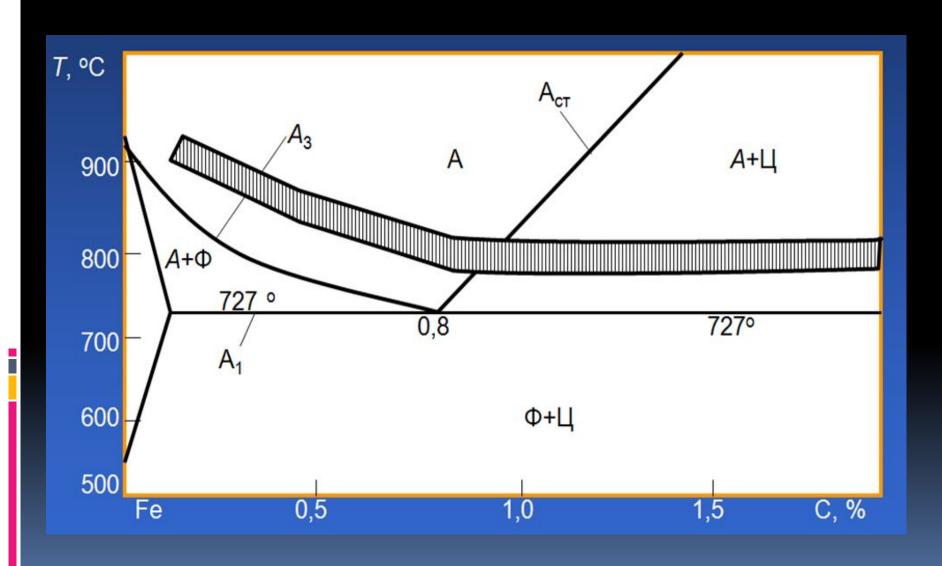
ОСНОВНЫЕ ВИДЫ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЕЙ. ЗАКАЛКА.

ЗАКАЛКА - это термическая обработка, состоящая из нагрева стали до температуры аустенитного состояния, выдержки при этой температуре и последующего *быстрого охлаждения со скоростью больше критической (V > Vкp)*.

<u>Цель закалки</u> - повышение твердости и прочности сталей за счет образования неравновесных закалочных структур.

В результате закалки подавляется распад аустенита на $(\Phi + \coprod)$ -смесь и аустенит превращается *в марменсим*.

Мартенсит - пересыщенный твердый раствор углерода в α-железе .


Мартенсит имеет не ОЦК-решетку, как феррит, а искаженную тетрагональную решетку (ОЦТ). Степень тетрагональности мартенсита определяется соотношением с/а,

где а - наименьшее ребро,

с - наибольшее ребро искаженной кубической решетки мартенсита.

Степень тетрагональности (и твердость М) линейно увеличивается *с ростом содержания углерода* в стали до 0,8%.

ИНТЕРВАЛ ТЕМПЕРАТУР НАГРЕВА ПОД ЗАКАЛКУ УГЛЕРОДИСТЫХ СТАЛЕЙ

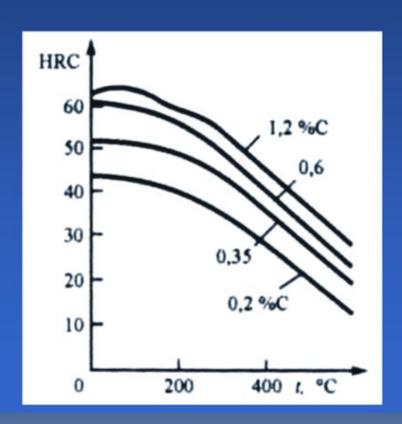
ОСНОВНЫЕ ВИДЫ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЕЙ. ОТПУСК.

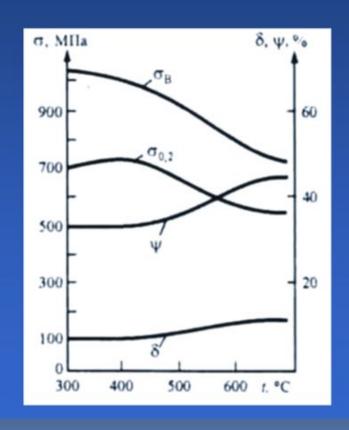
ОТПУСК - нагрев <u>закалённой</u> стали до температуры *ниже* фазовых превращений (ниже линии PSK) и последующее охлаждение в печи, воде или масле.

Отпуск является заключительной операцией термообработки.

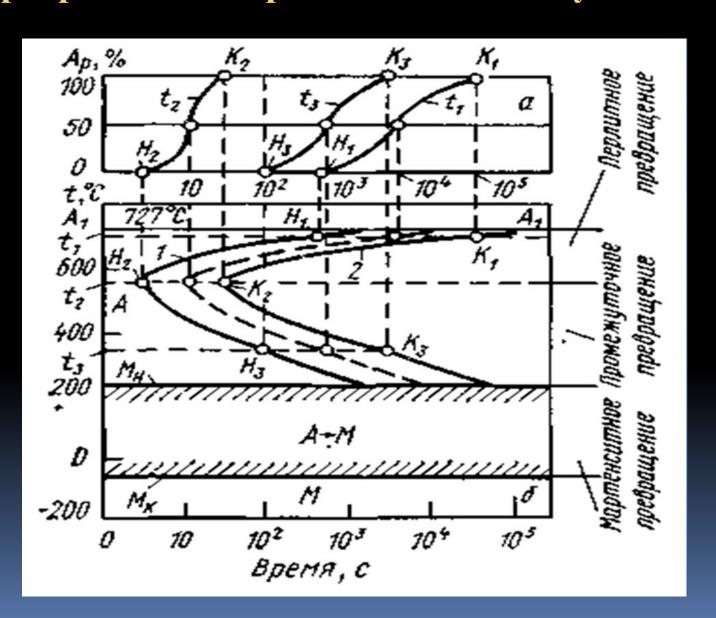
Отпуск необходим для снижения вредного действия внутренних напряжений в стали, оставшихся после закалки, уменьшения её хрупкости, повышения вязкости, улучшения обрабатываемости резанием.

Отпуск всегда проводится после закалки. Он позволяет сформировать комплекс свойств, необходимый для многолетней надежной эксплуатации изделий.


ВИДЫ ОТПУСКА СТАЛЕЙ


В зависимости от температуры нагрева различают:

- □ <u>Низкий отпуск.</u> Нагрев до 150-200 °C и медленное охлаждение в печи. При этом снижаются внутренние напряжения, но прочность и твердость остаются высокими (58-62 HRC). Применяется для режущего и мерительного инструмента.
- □ Средний отпуск. Нагрев до 350 500 °C и медленное охлаждение в печи. Снимаются внутренние напряжения, твердость снижается (40-50 HRC). Этот отпуск обеспечивает высокий предел упругости и применяется после закалки рессор и пружин.
- Высокий отпуск. Нагрев до 550-680 °С и охлаждение в масле. Обеспечивает высокий комплекс механических свойств (оптимальное соотношение прочности и пластичности, максимальная величина ударной вязкости). Применяется для деталей машин, подвергающихся динамическим и циклическим нагрузкам.


ИЗМЕНЕНИЕ СВОЙСТВ СТАЛЕЙ ПРИ ОТПУСКЕ

Зависимость твёрдости углеродистых сталей разного состава от температуры отпуска Влияние температуры отпуска на механические свойства стали

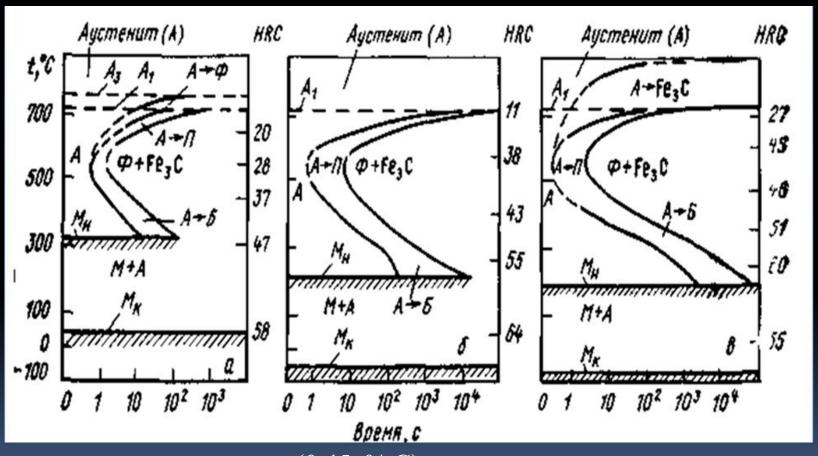
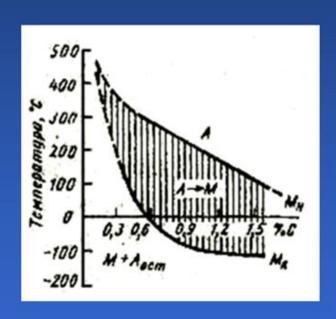
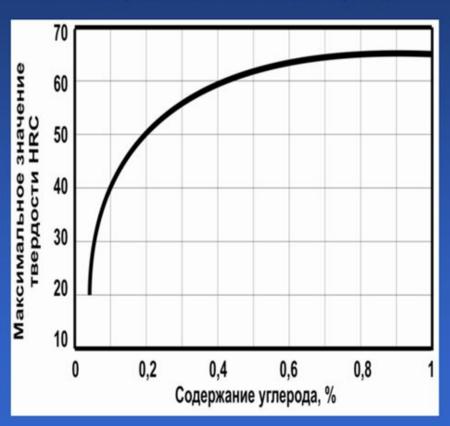


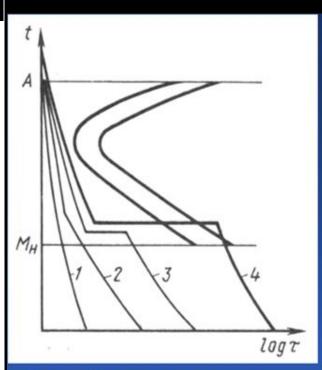
Схема построения диаграммы изотермического превращения переохлажденного аустенита

Диаграммы изотермического распада переохлажденного аустенита


а - доэвтектоидная сталь (0,45 % C),


⁶ – эвтектоидная сталь (0,8 % C), в – заэвтектоидная сталь (1,2 % C)

МАРТЕНСИТНОЕ ПРЕВРАЩЕНИЕ В СТАЛЯХ


Температура мартенситных точек
Мн и Мк при различном
содержании углерода в сталях

Твердость мартенсита в зависимости от содержания в нем углерода

ТЕХНОЛОГИЯ ЗАКАЛКИ

Способы охлаждения при закалке сталей:

1 – непрерывное охлаждение;

2 – закалка в двух

средах;

3 – ступенчатая закалка;

4 – изотермическая закалка

Скорость охлаждения стали в зависимости от закалочных сред

Закалочная среда	Скорость охлаждения, град/с в интервале температур °C		
	600–500	300–200	
Вода:			
при 20 °C (спокойная)	600	270	
при 20 °C (циркулирующая)	350	700	
при 40 °C (циркулирующая)	100	270	
Дистиллированная при 20 °C	250	200	
Дистиллированная при 80 °C	30	200	
10%-ные водные растворы:			
поваренной соли	1100	300	
едкого натра	1200	300	
соды (Na ₂ CO ₃)	800	270	
Минеральное масло при 20 °C	120	25	
Эмульсия (смесь масла и	70	200	
воды)	170	50	
Керосин			

 Научиться расшифровывать марки углеродистых сталей.

```
      Ст3
      У7
      45
      АС40

      ВСт4кп
      08А
      У13Г
      А30Е

      БСт6сп
      У10А
      05пс
      35
```

Стали общего назначения обыкновенного качества (ГОСТ380-94)

- Механические и физические свойства этой группы у каждой марки стали индивидуальны
- Группа А Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст6.
- Группа Б БСт0, БСт1, БСт2, Бст3,
- **БСт4, БСт5, БСт6.**
- Группа В ВСт1, ВСт2, ВСт3, ВСт4, ВСт5, ВСт6.

Цифры в марках обозначают № по таблице.

Например: Ст3- сталь общего назначения обыкновенного качества, гр.А, №3.

Применение:

Углеродистые качественные конструкционные стали (ГОСТ 1050-88)

Свойства:

- Прочность, пластичность, ударная вязкость.
- Низкоуглеродистые хорошо свариваются, куются, пластичны, штампуются, недостаточно прочны.
- Среднеуглеродистые высокая прочность и твердость, свариваемость невысока.
- Высокоуглеродистые высокая твердость и прочность.
- Добавка марганца увеличивает износоустойчивость и прокаливаемость.

Углеродистые качественные конструкционные стали (ГОСТ 1050-88)

- Низкоуглеродистые-05, 08, 09, 10, 12, 15, 20, 25
- Среднеуглеродистые 30, 35, 40
- Высокоуглеродистые 45, 50, 55, 60, 65

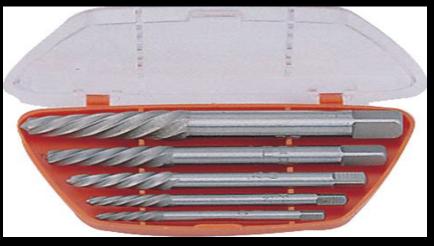
Цифры в марках обозначают процентное содержание углерода в сотых долях.

Например: 35 — конструкционная качественная углеродистая сталь, 0, 35%С.

Применение:

Инструментальные углеродистые стали (ГОСТ1435-90)

- Высокая поверхностная твердость.
- Высокаяизносостойкость.
- Пластичность.


- Достаточная прочность.
- Хорошо сопротивляется действию ударных нагрузок.

Цифры в марках обозначают процентное содержание углерода в десятых долях.

Например: У12 –инструментальная углеродистая сталь, 1,2%С.

Применение:

Буквенные обозначения.

Г- наличие марганца
Е - наличие селена
А (в начале марки) - автоматная серия
АС (в начале марки) - автоматная свинцовосодержащая серия

А (в конце марки) – сталь высококачественная пс – полуспокойная плавка сп – спокойная плавка кп – кипящая плавка

У8А — инст. уг. ст., 0,8%C, высококач.

AC40E — кач. угл. конст. ст., авт. свинц. с., 0,4%С, нал. селелена. ВСт3кп — ст. об. наз. об. к., гр.В, №3, кип. пл.

Цветовая маркировка углеродистых сталей.

C-0	Kasau iš u sasau iš sas
Ст0	Красный и зеленый п
Ст1	Желтый и черный nn
Ст2	Желтый n
Ст3	Красный <mark>п</mark>
Ст4	Черный n
Ст5	Зеленый п
Ст6	Синий n

Углеродистая качественная сталь		
08, 10, 15, 20	Белый п	
25, 30, 35, 40	Белый и желтый nn	
45, 50, 55, 60	Белый и коричневый nn	

Самостоятельная работа.

Расшифровать марки сталей.

- □ Ст0пс
- □ У12Г
- □ БСт2кп

- □ ВСт1сп
- □ AC35E
- □ Ст4кп