ЛОДУ с постоянными коэффициентами

Определение. Линейными однородными дифференциальными уравнениями с постоянными коэффициентами называют уравнения вида

$$y^{(n)} + p_1 y^{(n-1)} + \dots + p_{n-1} y' + p_n y = 0, (6)$$

где коэффициенты $p_1, p_2, ..., p_{n-1}, p_n - const.$

Частные решения будем искать в виде: $y = e^{kx}$ (7)

Определение. Уравнение

$$k^{n} + p_{1} k^{n-1} + \dots + p_{n-1} k + p_{n} = 0$$
 (8)

называется **характеристическим уравнением** ЛОДУ с постоянными коэффициентами, а многочлен

$$k^{n} + p_{1} k^{n-1} + ... + p_{n-1} k + p_{n} -$$

характеристическим многочленом.

Алгоритм решения ЛОДУ *n*-го порядка с постоянными коэффициентами

- 1. Составить характеристическое уравнение ($y = e^{kx}$).
- **♦** 2. Найти его корни $k_1, k_2, ...k_n$.
- **3**. По характеру корней найти частные линейно независимые решения $y_1(x), y_2(x), \dots, y_n(x)$ согласно таблице 4.
- 4. Записать общее решение

$$y(x) = C_1 y_1(x) + C_2 y_2(x) + ... + C_n y_n(x).$$

+

ㅂ	DV
Вид корня	Соответствующие
	решения
1. Действительный	e^{kx}
корень k кратности 1	
2. Пара сопряженных	
корней <i>а±bi</i> кратности 1	$e^{ax}\cos bx, \ e^{ax}\sin bx$
3. Действительный	$e^{kx}, xe^{kx}, x^2e^{kx},, x^{\alpha-1}e^{kx}$
корень k кратности α	
	$e^{ax}\cos bx, \ e^{ax}\sin bx$
4. Пара сопряженных	$xe^{ax}\cos bx$, $xe^{ax}\sin bx$
корней <i>а±bi</i>	*************************************
кратности α	$x^2e^{ax}\cos bx$, $x^2e^{ax}\sin bx$
	20-20
	$x^{\alpha-1}e^{ax}\cos bx$, $x^{\alpha-1}e^{ax}\sin bx$

ЛНДУ с произвольными коэффициентами

Вспомним, что ЛНДУ имеет вид

$$y^{(n)} + p_1(x) y^{(n-1)} + \dots + p_{n-1}(x) y' + p_n(x) y = f(x),$$
(9)

где $p_1(x), p_2(x), ..., p_n(x), f(x)$ — заданные функции аргумента x, причем $f(x) \neq 0$.

Теорема 4. (О структуре общего решения ЛНДУ)

Общее решение ЛНДУ есть сумма его частного решения и общего решения соответствующего однородного уравнения.

При
$$n = 2$$
, ЛНДУ 2-го порядка
$$y'' + p_1(x) y' + p_2(x) y = f(x). \tag{9'}$$

ЛНДУ с произвольными коэффициентами

Теорема 5. (Принцип суперпозиции решений)

Если функция $y_{i}(x)$ – является решением ЛНДУ

$$y^{(n)} + p_1(x) y^{(n-1)} + \dots + p_{n-1}(x) y' + p_n(x) y = f_i(x),$$
 (11)

то функция

$$y = \alpha_1 y_1 + \alpha_2 y_2 + ... + \alpha_k y_k$$

является решением уравнения

$$y^{(n)} + p_1(x) y^{(n-1)} + \dots + p_n(x) y = \alpha_1 f_1(x) + \alpha_2 f_2(x) + \dots + \alpha_k f_k(x).$$
 (12)

При n = 2, ЛНДУ 2-го порядка

$$y'' + p_1(x) y' + p_2(x) y = \alpha_1 f_1(x) + \alpha_2 f_2(x).$$

ЛНДУ *п*-го порядка

Рассмотрим ЛНДУ с постоянными коэффициентами

$$y^{(n)} + p_1 y^{(n-1)} + ... + p_{n-1} y' + p_n y = f(x)$$
,

где коэффициенты $p_1, p_2, ..., p_{n-1}, p_n - const.$

Метод неопределенных коэффициентов можно применить, если правая часть имеет вид

$$f(x) = e^{px} \left[P_m(x) \cos q \, x + Q_l(x) \sin q \, x \right],$$

где $P_m(x)$ и $Q_l(x)$ – многочлены степени m и l соответственно, p и q – некоторые числа.

Форма частного решения

Таблица5

Бер ЛМ.

Вид частного решения в зависимости от правой части ЛНДУ в. п.

Свободный член f(x)	Вид частного решения
1. $f(x) = A_0 x^m + A_1 x^{m-1} + + A_{m-1} x + A_m$	a) $y^* = B_0 x^m + B_1 x^{m-1} + + B_{m-1} x + B_m$
а) Число 0 не является корнем х.у.	
б) Число 0 является корнем х.у.	$\mathbf{5)} \ \ y^* = x^{\alpha} \left(B_0 x^m + B_1 x^{m-1} + \dots + B_{m-1} x + B_m \right)$
кратности а	7
2. $f(x) = e^{px} (A_0 x^m + A_1 x^{m-1} + + A_{m-1} x + A_m)$	a) $y^* = e^{px} (B_0 x^m + B_1 x^{m-1} + + B_{m-1} x + B_m)$
а) Число р не является корнем х.у.	
б) Число р является корнем х.у.	6) $y^* = x^{\alpha} e^{px} (B_0 x^m + B_1 x^{m-1} + + B_{m-1} x + B_m)$
кратности а	
$3. f(x) = P_m(x) \cos qx + Q_l(x) \sin qx$	a) $y^* = \overline{P_s}(x)\cos qx + \overline{Q_s}(x)\sin qx$,
	$s = \max(m, l)$
$a) (\pm qi)$ не является корнем х.у.	$\boxed{6) \ \ y^* = x^{\alpha} \Big(\overline{P_s}(x) \cos qx + \overline{Q_s}(x) \sin qx \Big),}$
б) $(\pm qi)$ является корнем х.у. кратности $lpha$	$s = \max(m, l)$
$4. f(x) = e^{px} \left(P_m(x) \cos qx + Q_l(x) \sin qx \right)$	a) $y^* = e^{px} \left[\overline{P_s}(x) \cos qx + \overline{Q_s}(x) \sin qx \right],$
	$s = \max(m, l)$
\mathbf{a}) $(p \pm qi)$ не является корнем х.у.	$\boxed{6) \ \ y^* = x^{\alpha} e^{px} \left(\overline{P_s}(x) \cos qx + \overline{Q_s}(x) \sin qx \right),}$

ЛНДУ *п*-го порядка

Замечание 1. Степени многочленов $P_m(x)$ и $Q_l(x)$ в случаях 3,4 таблицы 5 можно считать одинаковой (max $\{m,l\}$). В этом случае коэффициенты при недостающих степенях одного из многочленов можно считать равными нулю.

Замечание 2. Правая часть уравнения может содержать несколько слагаемых; в этом случае частное решение также составляется из нескольких слагаемых в соответствии с теоремой 5.

Метод Лагранжа для ЛНДУ в п

Система линейных неоднородных уравнений с n неизвестными функциями $C_i(x)$, i = 1, 2, ..., n:

$$\begin{cases} C'_{1}(x)y_{1} + C'_{2}(x)y_{2} + ...C'_{n}(x)y_{n} = 0 \\ C'_{1}(x)y'_{1} + C'_{2}(x)y'_{2} + ...C'_{n}(x)y'_{n} = 0 \\ ... \\ C'_{1}(x)y_{1}^{(n-2)} + C'_{2}(x)y_{2}^{(n-2)} + ...C'_{n}(x)y_{n}^{(n-2)} = 0 \\ C'_{1}(x)y_{1}^{(n-1)} + C'_{2}(x)y_{2}^{(n-1)} + ...C'_{n}(x)y_{n}^{(n-1)} = f(x) \end{cases}$$

Алгоритм решения ЛНДУ *n*-го порядка методом Лагранжа

♦ 1. Найти ФСР ЛОДУ соответствующего ЛНДУ и записать его общее решение:

$$y(x) = C_1 y_1(x) + C_2 y_2(x) + ... + C_n y_n(x).$$

***** 2. Записать решение ЛНДУ в форме общего решения ЛОДУ, считая $C_i = C_i(x), i = 1, 2, ..., n$:

$$y(x) = C_1(x) y_1(x) + C_2(x) y_2(x) + \ldots + C_n(x) y_n(x).$$
(18)

- **3**. Построить систему для определения $C_{i}'(x)$ и решить ее согласно (17).
- **4**. Найти $C_i(x)$ и подставить их в общее решение ЛНДУ (18).

Спасибо за внимание Бер Л.М. Обыкновенные диференциальные уравнения ГОУ ВПО НИ ТПУ Рег. № 189 от 17.06.10