Частотно-временной анализ нейрофизиологических данных в исследованиях психических феноменов

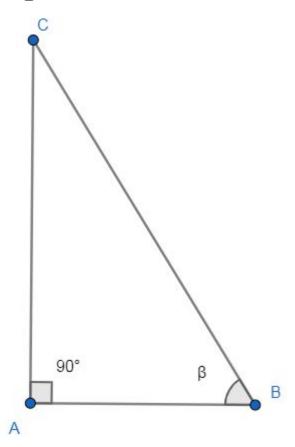
Лекция 7. Введение в частотный анализ

Ключевые разделы лекции

- □ Вспоминаем тригонометрию
- □ Комплексные числа
- □ Понятие сигнала.
- □ Ряд Фурье.
- □ Преобразование Фурье
- □ Анализ графиков спектров

Базовые формулы тригонометрии:

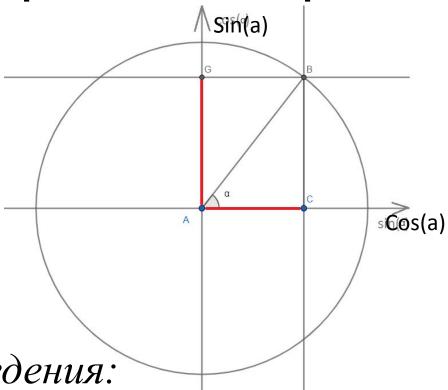
•
$$\sin \beta = \frac{AC}{BC}$$


•
$$\cos \beta = \frac{AB}{BC}$$

•
$$tg \beta = \frac{AC}{AB}$$

•
$$tg \beta = \frac{AC}{AB}$$

• $ctg \beta = \frac{AB}{AC}$


•
$$\sin \beta^2 + \cos \beta^2 = 1$$

•
$$tg \beta \times ctg \beta = 1$$

Табличные значения тригонометрических функций:

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
	0°	30°	45°	60°	90°	180°	270°	360°
sin α	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
<u>cos</u> α	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
tg a	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	n p.	0	ne:	0
ctg a		$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0		0	

Формулы приведения:

Угол Функция	$-\alpha$	$\frac{\pi}{2} \pm \alpha$	$\pi \pm \alpha$	$\frac{3}{2}\pi\pm \alpha$	$2\pi\pmlpha$
sin	-sin a	cos a	\mp sin a	- cos a	± sin a
cos	cos a	∓ sin a	- cos a	± sin a	cos a
tg	-tg a	∓ ctg a	<u>+</u> tg <i>a</i>	∓ ctg a	<u>+</u> tg <i>a</i>
ctg	-ctg a	∓ tg <i>a</i>	± ctg a	∓ tg <i>a</i>	± ctg a

 $\sin(x + y) = \sin x \cos y + \sin y \cos x$ $\sin(x - y) = \sin x \cos y - \sin y \cos x$ $\cos(x + y) = \cos x \cos y - \sin x \sin y$ $\cos(x - y) = \cos x \cos y + \sin x \sin y.$

3адача 1: Вычислите $\sin(90)$

Задача 2: Вычислите cos(180)

Задача 3: Вычислите sin(135)

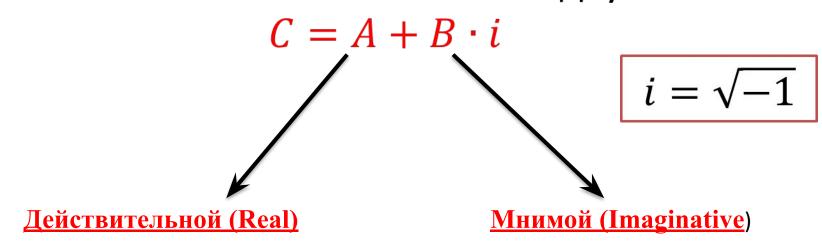
Задача 4: Вычислите cos(120)

Задача 5: Вычислите $\sin(270)$

Задача 6: Вычислите cos(75)

Задача 7: Вычислите sin(15)

Числовые множества:


$$\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$

- \mathbb{Z} множество целых чисел (не имеет операции деления)
- \mathbb{R} множество действительных чисел (не извлекается корень из отрицательных чисел)

Вот для этих целей и было впервые множество комплексных чисел:

$$\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

Комплексное число С состоит из двух частей:

Операции над комплексными числами:

Пусть
$$C_1 = A_1 + B_1 \cdot i$$
; $C_2 = A_2 + B_2 \cdot i$, тогда:

1.
$$C_1 \pm C_2 = (A_1 + B_1 \cdot i) \pm (A_2 + B_2 \cdot i) = (A_1 \pm A_2) + (B_1 \pm B_2) \cdot i$$

2.
$$C_1 \times C_2 = (A_1 + B_1 \cdot i) \times (A_2 + B_2 \cdot i) = A_1 \times A_2 + A_1 \times B_2 \cdot i + B_1 \times A_2 \cdot i - B_1 \times B_2 = (A_1 \times A_2 - B_1 \times B_2) + (A_1 \times B_2 + B_1 \times A_2) \cdot i$$

Операции над комплексными числами:

Пусть
$$C_1 = A_1 + B_1 \cdot i$$
; $C_2 = A_2 + B_2 \cdot i$, тогда:

$$3.\frac{C_1}{C_2} = \frac{A_1 + B_1 \cdot i}{A_2 + B_2 \cdot i} = \frac{(A_1 + B_1 \cdot i) \times (A_2 - B_2 \cdot i)}{(A_2 + B_2 \cdot i) \times (A_2 - B_2 \cdot i)} =$$

$$= \frac{(A_1 + B_1 \cdot i) \times (A_2 - B_2 \cdot i)}{(A_2 + B_2 \cdot i) \times (A_2 - B_2 \cdot i)} = \frac{A_1 \times A_2 - A_1 \times B_2 \cdot i + B_1 \times A_2 \cdot i - B_1 \times B_2}{A_2^2 + B_2^2}$$

3адача 1: A = 3 + 3i; B = 5 + 2i

Найти: C = A + B Ответ: C = 8 + 5i

Задача 2: A = 6 - 4i; B = -5 + 8i

Найти: C = A + B Ответ: C = 1 + 4i

Задача 3: A = 9 - 6i; B = 4 + 5i

Найти: C = A - B Ответ: C = 5 -11i

3адача 4: A = 2 + 4i; B = 1 - 3i

Найти: $C = A \times B$ Ответ: C = 14 - 2i

Задача 5: A = 7 - 5i; B = -3 - 2i

Найти: $C = A \times B$ Ответ: C = -31 + i

Задача 6: A = 11 - 3i; B = -5 + 4i

Найти: $C = A \times B$ Ответ: C = -43 - 59i

3адача 7:
$$A = 2 + 4i$$
; $B = 1 - 3i$

Найти:
$$C = \frac{A}{B}$$

Задача 8:
$$A = 7 - 5i$$
; $B = -3 - 2i$

Найти:
$$C = A/B$$

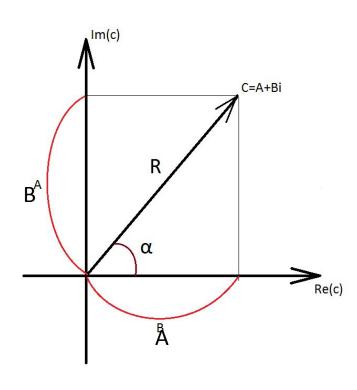
Ответ:
$$C = -\frac{11}{13} + \frac{29}{13}i$$

Ответ: C = -1 + i

Задача 9:
$$A = 11 - 3i$$
; $B = -5 + 4i$

Найти:
$$C = A/B$$
 Ответ: $C = -\frac{67}{41} + \frac{29}{41}i$

Формы представления комплексных чисел:


1.
$$C = A + B \cdot i -$$
алгебраическая

2.
$$C = R(\cos(\alpha) + \sin(\alpha) \cdot i)$$

- тригонометрическая

3. С =
$$Re^{i\alpha}$$
 – показательная

$$R=\sqrt{A^2+B^2}$$
 - модуль $lpha=arctg\left(rac{B}{A}
ight)$ - аргумент или фаза

Возведение в степень комплексных чисел Формула Муавра:

$$z^n = r^n(\cos n\varphi + i\sin n\varphi)$$

$$z^{1/n} = r^{1/n} \left(\cosrac{arphi+2\pi k}{n} + i\sinrac{arphi+2\pi k}{n}
ight)$$

3адача 1:Преобразовать к триг. виду: A = 3 + 3i; B = 5 + 2i

Задача 2: Преобразовать к показ. виду:

$$A = 6 - 4i$$
; $B = -5 + 8i$

Задача 3: Преобразовать к алг. виду: $A = 6\sqrt{2}(\cos(45) + \sin(45)i)$;

B =
$$4\sqrt{3}e^{\frac{\pi}{3}i}$$
; C = $4e^{\frac{\pi}{2}i}$; D = $4e^{\pi i}$;

Задача 4: Найти все числа **A**, такие что $A^3 = 8$

Задача 5: Найти все числа A, такие что $A^3 = -27$

Задача 6: Возведите в степень в третью степень:

$$A = 1 + \sqrt{3}i$$
; $B = -2\sqrt{3} - 2i$;