

Материальные расчеты неравновесных ВТП

<u>Исходные данные</u>:

- 1) состав исходных компонентов;
- 2) соотношения расходов отдельных компонентов. То есть задаем ко-эффициенты расходов і-х компонентов;
 - 3) перечень химических реакций;
 - 4) σ_і степень завершения каждой і-й реакции:

 $\sigma_{\rm i}$ = 1 — реакция прошла необратимо, до конца; $\sigma_{\rm i}$ = 0 — реакция не идет. Вещества не реагируют.

Искомые величины — те же, что и в МР ИВТП.

Неравновесный процесс обжига известняка

Исходные данные:

1) состав известняка:

$$CaCO_3$$
 $MgCO_3$, SiO_2 Al_2O_5 , FeO_3 , H_2O карбонаты балласт

(не участвует в хим. реакциях)

2) химические реакции:

$$MgCO_3 = MgO + CO_2$$

$$84 \text{kg} \qquad 40 \text{kg} \qquad 44 \text{kg}$$

3) степени завершения каждой реакции:

$$\sigma_1 < 1$$
; $\sigma_2 = 1$; $\sigma_{\text{балласт}} = 0$; $\sigma_{\text{H,O}} = 0$.

Искомые величины:

$$m_{{\rm CaCO}_3}, m_{{
m CaO}}, m_{{
m MgCO}_3}, m_{{
m MgO}}, m_{{
m бал}}, m_{{
m H}_2{
m O}}, m_{{
m CO}_2}, m_{{
m T.II}}, m_{{
m o.r}}, V_{{
m o.r}}$$

Решение:

$$\begin{split} m_{\text{CaO}} &= \frac{56}{100} \ 0.01 \text{CaCO}_3 \, \sigma_1 \\ m_{\text{CaCO}_3} &= 0.01 \text{CaCO}_3 \left(1 - \sigma_1\right) \\ m_{\text{MgO}} &= \frac{40}{84} \ 0.01 \text{MgCO}_3 \, \sigma_2 \\ m_{\text{MgCO}_3} &= 0.01 \text{MgCO}_3 \left(1 - \sigma_2\right) = 0 \\ m_{\text{бал}} &= 0.01 \left(\text{SiO}_2 + \text{Al}_2 \text{O}_3 + \text{Fe}_2 \text{O}_3\right) \left(1 - \sigma_3\right) \\ m_{\text{T.II}} &= m_{\text{CaO}} + m_{\text{CaCa}_3} + m_{\text{MgO}} + m_{\text{бал}} \\ m_{\text{H}_2\text{O}} &= 0.01 \text{H}_2\text{O} \\ m_{\text{CO}_2} &= \frac{44}{100} \ 0.01 \text{CaCO}_3 \, \sigma_1 + \frac{44}{84} \ 0.01 \text{MgCO}_3 \, \sigma_2 \\ m_{\text{O.I}} &= m_{\text{CO}_2} + m_{\text{H}_2\text{O}} \\ V_{\text{O.I}} &= \frac{m_{\text{CO}_2}}{\rho_{\text{CO}_2}} + \frac{m_{\text{H}_2\text{O}}}{\rho_{\text{H}_2\text{O}}}; \quad \rho_{\text{CO}_2} &= \frac{44}{22.4}; \quad \rho_{\text{H}_2\text{O}} &= \frac{18}{22.4} \end{split}$$

Пиролиз газообразного топлива (неравновесный процесс)

Исходные данные:

- 1) состав топлива: $CH_4^T = 100\%$
- 2) химическая реакция и степень ее завершения:

$$CH_4 \rightarrow C + 2H_2$$
; $0 < \sigma < 1$.

Искомые величины:

$$V_{\text{CH}_4}$$
; V_{H_2} ; $V_{\Gamma} = V_{\text{CH}_4} + V_{\text{H}_2}$, м³/(м³ топлива); m_{C} , кг/(м³ топлива).

Решение:

1)
$$V_{\text{CH}_4} = 1 - \sigma$$
; $V_{\text{H}_2} = 2\sigma$; $V_{\Gamma} = 1 - \sigma + 2\sigma = 1 + \sigma$;

2) Уравнение материального баланса по углероду:

$$\frac{1}{224} \cdot 12 = \frac{V_{\text{CH}_4}}{224} \cdot 12 + m_{\text{C}}; \quad \frac{1}{224} \cdot 12 = \frac{1-\sigma}{224} \cdot 12 + m_{\text{C}}; \quad m_{\text{C}} = \sigma \frac{12}{224}.$$

$$M_{\text{C}}^{\text{HCX}} \qquad M_{\text{C}}^{\text{продукты}}$$

Неравновесный процесс паровой конверсии природного газа

Исходные данные:

- 1. состав топлива: $\mathrm{CH_4}^{\mathsf{T}}, \mathrm{C_2H_6}^{\mathsf{T}}, \mathrm{C_3H_8}^{\mathsf{T}}, \mathrm{CO_2}^{\mathsf{T}}, \mathrm{N_2}^{\mathsf{T}},$ %, влагосодержание топлива d_{T} , г/м³;
- 2. состав окислителя: $H_2O^{o\kappa} = 100 \%$;
- 3. удельный расход окислителя: $V_{\rm ox}$, ${\rm m}^3/({\rm m}^3$ топлива);
- 4. перечень химических реакций и степени их завершения:

1)	$CH_4 + H_2O \rightarrow CO + 3H_2$,	0 < σ ₁ < 1
2)	$C_2H_6 + 2H_2O \rightarrow 2CO + 5H_2$	σ_2 =1
3)	$C_3H_8 + 3H_2O \rightarrow 3CO + 7H_2$	σ_3 =1
4)	$CO + H_2O \rightarrow CO_2 + H_2;$	0 < σ ₄ < 1
5)	CO_2^T, N_2^T, H_2O^T	σ ₅ =0

Искомые величины:

$$V_{\mathrm{CH_4}};~V_{\mathrm{CO}};~V_{\mathrm{CO_2}};~V_{\mathrm{H_2}};~V_{\mathrm{H_2O}};~V_{\mathrm{N_2}};~V_{\mathrm{n.k}}$$
 , м³/(м³ топлива)

Решение

$$V_{\mathrm{CH_4}} = 0.01 \, \mathrm{CH_4}^{\mathrm{T}} \left(1 - \sigma_1 \right)$$
 $V_{\mathrm{C_2H_6}} = V_{\mathrm{C_3H_8}} = 0$, т.к. σ_2 = σ_3 = 1;

Суммарный выход СО по реакциям 1, 2, 3

$$V_{\text{CO}}^{(1,2,3)} = 0.01 \left(\text{CH}_4^{\text{T}} \sigma_1 + \text{C}_2 \text{H}_6^{\text{T}} \sigma_2 + \text{C}_3 \text{H}_8^{\text{T}} \sigma_3 \right).$$

Расход СО по реакции 4

$$V_{\rm CO}^{(4)} = V_{\rm CO}^{(1,2,3)} \, \sigma_4.$$

Итоговый выход СО по реакциям 1-4

$$V_{\rm CO} = V_{\rm CO}^{(1,2,3)} - V_{\rm CO}^{(4)} = V_{\rm CO}^{(1,2,3)} (1 - \sigma_4).$$

Суммарный выход Н2 по реакциям 1, 2, 3

$$V_{\rm H_2}^{(1,2,3)} = 0.01 \left(3C H_4^{\rm T} \sigma_1 + 5C_2 H_6^{\rm T} \sigma_2 + 7C_3 H_8^{\rm T} \sigma_3 \right).$$

Выход Н2 по реакции 4

$$V_{\rm H_2}^{(4)} = V_{\rm CO}^{(4)}$$
.

Итоговый выход H₂ по реакциям 1-4

$$V_{\rm H_2} = V_{\rm H_2}^{(1,2,3)} + V_{\rm H_2}^{(4)}$$
.

Выходы прочих компонентов

$$\begin{split} V_{\rm H_2O} = & \frac{d_{_{\rm T}}}{804} + V_{_{\rm OK}} - V_{_{\rm CO}}^{} - V_{_{\rm CO}}^{} = \frac{d_{_{\rm T}}}{804} + V_{_{\rm OK}} - V_{_{\rm CO}}^{} \big(1 + \sigma_4 \big); \\ V_{\rm CO_2} = & 0.01 {\rm CO_2}^{^{\rm T}} + V_{_{\rm CO}}^{}; \\ V_{\rm N_2} = & 0.01 {\rm N_2}^{^{\rm T}}. \end{split}$$

Выход продуктов конверсии

$$V_{\rm \tiny H.K} = V_{\rm CH_4} + V_{\rm CO} + V_{\rm CO_2} + V_{\rm H_2} + V_{\rm H_2O} + V_{\rm N_2} \,.$$

Выход сухих продуктов конверсии

$$V_{\text{c.n.k}} = V_{\text{CH}_4} + V_{\text{CO}} + V_{\text{CO}_2} + V_{\text{H}_2} + V_{\text{N}_2}$$
.

Кислородная газификация углерода (неравновесный процесс)

Исходные данные:

- 1. Состав исходных компонентов: $C^p = 100\%$, $O_2^{ok} = 100\%$.
- 2. Состав технологического продукта генераторного газа:

$$CO^{r.r}, CO_2^{r.r}, \%; (CO^{r.r} + CO_2^{r.r} = 100).$$

3. химические реакции, определяющие состав продукта:

$$2C + O_2 \rightarrow 2CO$$
, $C + O_2 \rightarrow CO_2$.

Искомые величины:

- удельный расход окислителя $V_{\rm ox}$, м³/(кг топлива);
- удельный расход генераторного газа $V_{_{\Gamma,\Gamma}}$ и его компонентов $V_{_{\mathrm{CO}}},V_{_{\mathrm{CO}_2}}$, м 3 /(кг топлива).

Решение

$$\begin{cases} \frac{V_{\text{CO}} + V_{\text{CO}_2}}{22,4} & 12 = 0,01\text{C}^{\text{p}} \\ \frac{V_{\text{CO}} + 2V_{\text{CO}_2}}{22,4} & 16 = V_{\text{ok}} & 0,01\text{O}_2^{\text{ok}} \cdot 2\frac{16}{22,4}, \\ V_{\text{CO}} + V_{\text{CO}_2} & = V_{\text{r.r}} \end{cases} & \begin{cases} V_{\text{r.r}} = 0,01\text{C}^{\text{p}} \frac{22,4}{12} \\ V_{\text{r.r}} \left(\text{CO}^{\text{r.r}} + 2\text{CO}_2^{\text{r.r}} \right) = 2V_{\text{ok}} \text{O}_2^{\text{ok}} \end{cases} \\ \begin{cases} V_{\text{r.r}} = 0,01\text{C}^{\text{p}} \frac{22,4}{12} \\ V_{\text{r.r}} \left(100 + \text{CO}_2^{\text{r.r}} \right) = 2V_{\text{ok}} \text{O}_2^{\text{ok}} \end{cases} \end{cases}$$

Вычисляем $V_{_{\Gamma,\Gamma}}$, $V_{_{
m OK}}$. Затем находим удельные выходы компонентов генераторного газа: $V_{_{
m CO}}=0.01\,V_{_{\Gamma,\Gamma}}\;{
m CO}^{_{\Gamma,\Gamma}};\;\;V_{_{
m CO}}{}_{_2}=V_{_{\Gamma,\Gamma}}-V_{_{
m CO}}\,.$