Тригонометрические уравнения

1. Арккосинус числа $a \in [-1; 1]$ (обозначается arccos a) — такое число $\alpha \in [0; \pi]$, косинус которого равен a, т. е.

 $0 \le \arccos a \le \pi$, $\cos(\arccos a) = a$.

Если $a \in [0; 1]$, то $0 \le \arccos a \le \frac{\pi}{2}$, а если $a \in [-1; 0)$, то $\frac{\pi}{2} < \arccos a \le \pi$. Если |a| > 1, то выражение $\arccos a$ не имеет смысла.

2. Для любого $a \in [-1; 1]$ справедливо равенство

 $\cos(\arccos a) = a. \tag{1}$

Равенство

 $\arccos(\cos\alpha) = \alpha$ (2)

является верным только при $\alpha \in [0; \pi]$, хотя выражение $\arccos(\cos \alpha)$ имеет смысл при всех $\alpha \in \mathbb{R}$.

Для любого $a \in [-1; 1]$ верно равенство

 $\arccos(-a) = \pi - \arccos a. \tag{3}$

3. Если -1 ≤ a ≤ 1, то все корни уравнения

$$\cos x = a$$

(4)

определяются формулой

$$x = \pm \arccos a + 2\pi n, \ n \in \mathbf{Z}. \tag{5}$$

Если |a| > 1, то уравнение (4) не имеет корней.

4. Формулы корней уравнения (4) при a = 0, a = 1, a = -1:

$$\cos x = 0, \ x = \frac{\pi}{2} + \pi n, \ n \in \mathbb{Z};$$
 (6)

$$\cos x = 1, \ x = 2\pi n, \ n \in \mathbf{Z}; \tag{7}$$

$$\cos x = -1, \ x = 2\pi n, \ n \in \mathbb{Z}.$$

3. Решить уравнение:

1)
$$5\cos x = 2$$
; 2) $\cos 5x = -1$; 3) $2\cos \frac{x}{2} = 1$;
4) $\cos\left(3x + \frac{\pi}{4}\right) = 0$; 5) $4\cos^2 x - 3 = 0$; 6) $\cos 2x = \frac{3}{2\sqrt{2}}$.

Решение.

1) Запишем уравнение в виде $\cos x = \frac{2}{5}$ и по формуле (5) найдём его корни: $x = \pm \arccos \frac{2}{5} + 2\pi n, \ n \in \mathbf{Z}$.

2) Применив формулу (8), получим $5x = \pi + 2\pi n$, откуда $x = \frac{\pi}{5} + \frac{2\pi n}{5}$, $n \in \mathbb{Z}$.

3) Так как $\cos \frac{x}{2} = \frac{1}{2}$, то по формуле (5) получаем $\frac{x}{2} = \pm \arccos \frac{1}{2} + 2\pi n$, где $\arccos \frac{1}{2} = \frac{\pi}{3}$. Поэтому $x = \pm \frac{2\pi}{3} + 4\pi n$, $n \in \mathbb{Z}$.

4) Применив формулу (6), получим $3x + \frac{\pi}{4} = \frac{\pi}{2} + \pi n$, откуда $x = \frac{\pi}{12} + \frac{\pi n}{3}$, $n \in \mathbb{Z}$.

12 3 5) Так как $\cos^2 x = \frac{3}{4}$, то $\cos x = \frac{\sqrt{3}}{2}$ и $\cos x = -\frac{\sqrt{3}}{2}$, откуда $x = \pm \frac{\pi}{6} + 2\pi n$ и $x = \pm \frac{5\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$. Заметим, что эти две серии корней можно объединить в одну с помощью формулы $\cos^2 x = \frac{1 + \cos 2x}{2}$. Тогда уравнение примет вид $\cos 2x = \frac{1}{2}$, откуда

 $2x = \pm \frac{\pi}{3} + 2\pi n, \ x = \pm \frac{\pi}{6} + \pi n, \ n \in \mathbb{Z}.$

6) Уравнение $\cos 2x = \frac{3}{2\sqrt{2}}$ не имеет корней, так как $3 > 2\sqrt{2}$ (это следует из неравенства 9 > 8).

1. Арксинус числа $a \in [-1; 1]$ (обозначается $\arcsin a$) — такое число $\alpha \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$, синус которого равен a, т. е.

$$-\frac{\pi}{2} \le \arcsin a \le \frac{\pi}{2}$$
, $\sin(\arcsin a) = a$.

Если $a \in [0; 1]$, то $0 \le \arcsin a \le \frac{\pi}{2}$, а если $a \in [-1; 0)$, то $-\frac{\pi}{2} \le \arcsin a < 0$.

Если |a| > 1, то выражение $\arcsin a$ не имеет смысла.

2. Для любого $a \in [1; 1]$ справедливо равенство

$$\sin(\arcsin a) = a. \tag{1}$$

Равенство

$$\arcsin(\sin\alpha) = \alpha$$
 (2)

является верным при $\alpha \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$, хотя выражение в левой части

имеет смысл при всех $\alpha \in \mathbf{R}$.

Для любого $a \in [-1; 1]$ верно равенство

$$\arcsin(-a) = -\arcsin a.$$
 (3)

3. Для любого $a \in [-1; 1]$ справедливо равенство

$$\arcsin a + \arccos a = \frac{\pi}{2}.$$
 (4)

4. Если $|a| \le 1$, то все корни уравнения

$$\sin x = a \tag{5}$$

определяются формулой

$$x = \arcsin a + 2\pi n, n \in \mathbb{Z}.$$

$$x = \pi : -\arcsin a + 2\pi n, n \in \mathbb{Z}.$$

Если |a| > 1, то уравнение (5) не имеет корней.

5. Формулы корней уравнения (5) при a = 0, a = 1, a = -1:

$$\sin x = 0, \ x = \pi n, \ n \in \mathbf{Z}; \tag{7}$$

$$\sin x = 1, \ x = \frac{\pi}{2} + 2\pi n, \ n \in \mathbb{Z};$$
 (8)

$$\sin x = -1, \ x = -\frac{\pi}{2} + 2\pi n, \ n \in \mathbb{Z}.$$
 (9)

Решить уравнение:

1)
$$4\sin x = 3$$
; 2) $\sin 4x = -1$; 3) $2\sin \frac{x}{2} = -\sqrt{3}$;

4)
$$\sin\left(5x + \frac{3\pi}{4}\right) = 0;$$
 5) $3\sqrt{3}\sin x = 2\sqrt{7};$

6)
$$9\sin^2 x - 1 = 0$$
; 7) $\sin 5x \cos 2x - \cos 5x \sin 2x = 1$.

1) Так как
$$\sin x = \frac{3}{4}$$
, то по формуле (6) получаем $x = (-1)^n \arcsin \frac{3}{4} + \pi n, \ n \in \mathbb{Z}.$

2) По формуле (9) находим
$$4x = -\frac{\pi}{2} + 2\pi n$$
, откуда $x = -\frac{\pi}{8} + \frac{\pi n}{2}$, $n \in \mathbb{Z}$.

3) Корни уравнения
$$\sin\frac{x}{2}=-\frac{\sqrt{3}}{2}$$
 найдём по формуле (6).
Учитывая, что $\arcsin\left(-\frac{\sqrt{3}}{2}\right)=-\arcsin\frac{\sqrt{3}}{2}=-\frac{\pi}{3}$, получаем

$$rac{x}{2}=(-1)^nrcsinigg(-rac{\sqrt{3}}{2}igg)+\pi n=(-1)^{n+1}rac{\pi}{3}+\pi n,$$
откуда $x=(-1)^{n+1}rac{2\pi}{3}+2\pi n,\ n\in Z.$

4) Применив формулу (7), находим
$$5x + \frac{3\pi}{4} = \pi n$$
, откуда

$$x = -\frac{3\pi}{20} + \frac{\pi n}{5}, \ n \in \mathbb{Z}.$$

5) Уравнение
$$\sin x = \frac{2\sqrt{7}}{3\sqrt{3}}$$
 не имеет корней, так как $\frac{2\sqrt{7}}{3\sqrt{3}} > 1$

(это вытекает из неравенства 28 > 27).

6) Так как
$$\sin^2 x = \frac{1}{9}$$
, то $\sin x = \frac{1}{3}$, $\sin x = -\frac{1}{3}$, откуда $x = (-1)^n \arcsin \frac{1}{2} + \pi n$, $x = (-1)^{n+1} \arcsin \frac{1}{2} + \pi n$, $n \in \mathbb{Z}$.

Заметим, что эти две серии корней можно записать в виде одной формулы, если заменить $\sin^2 x$ на $\frac{1-\cos 2x}{2}$. Тогда получим $\frac{1-\cos 2x}{2}=\frac{1}{9},\ \cos 2x=\frac{7}{9},\ \text{откуда}\ 2x=\pm \arccos\frac{7}{9}+2\pi n,$ $x=\pm\frac{1}{2}\arccos\frac{7}{9}+\pi n,\ n\in \mathbf{Z}.$

7) Применив формулу синуса разности, запишем уравнение в виде $\sin(5x-2x)=1$, или $\sin 3x=1$, откуда по формуле (8) получим $3x=\frac{\pi}{2}+2\pi n$, $x=\frac{\pi}{6}+\frac{2\pi n}{3}$, $n\in \mathbb{Z}$.

$$-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$$
, $\operatorname{tg} \alpha = a$.

2. Для любого $a \in R$ справедливо равенство

$$tg(arctg a) = a. (1)$$

Равенство

$$arctg(tg\alpha) = \alpha$$
 (2)

является верным только при $\alpha \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$.

Для любого $a \in \mathbf{R}$ справедливо равенство $\operatorname{arctg}(-a) = -\operatorname{arctg} a.$ (3)

3. Для любого $a \in \mathbf{R}$ уравнение $\operatorname{tg} x = a$ имеет корни, определяемые формулой

$$x = \operatorname{arctg} a + \pi n, \ n \in \mathbb{Z}. \tag{4}$$

- 1) tg 2x = 1; 2) $\sqrt{3} tg \frac{x}{3} + 1 = 0$; 3) $4 9 tg^2 3x = 0$.

Решение.

1) По формуле (4) находим $2x = \arctan 1 + \pi n = \frac{\pi}{4} + \pi n$, откуда

 $x=\frac{\pi}{8}+\frac{\pi n}{2},\ n\in\mathbf{Z}.$

2) Записав уравнение в виде $tg \frac{x}{3} = -\frac{1}{\sqrt{3}}$, по формуле (4) на-

ходим $\frac{x}{3} = \operatorname{arctg}\left(-\frac{1}{\sqrt{3}}\right) + \pi n$, где $\operatorname{arctg}\left(-\frac{1}{\sqrt{3}}\right) = -\operatorname{arctg}\frac{1}{\sqrt{3}} = -\frac{\pi}{6}$.

Поэтому $x = 3\left(-\frac{\pi}{6}\right) + 3\pi n = -\frac{\pi}{2} + 3\pi n, \ n \in \mathbb{Z}.$

3) Запишем уравнение в виде $tg^2 3x = \frac{4}{9}$, откуда $tg 3x = \frac{2}{3}$,

 $tg 3x = -\frac{2}{3}$. Если $tg 3x = \frac{2}{3}$, то $3x = arctg \frac{2}{3} + \pi n$, $x = \frac{1}{3} arctg \frac{2}{3} + \frac{\pi n}{3}$,

 $n \in \mathbb{Z}$. Если $\lg 3x = -\frac{2}{3}$, то $x = -\frac{1}{3} \operatorname{arctg} \frac{2}{3} + \frac{\pi n}{3}$, $n \in \mathbb{Z}$.

Решение тригонометрических уравнений сводится в итоге к решению одного из простейших тригонометрических уравнений $\sin x = a$, $\cos x = a$, $\tan x = a$. Напомним общие формулы корней этих уравнений:

Уравнение		Корни
$\sin x = a, a \leq 1$	(1)	$x = (-1)^n \arcsin a + \pi n, \ n \in \mathbf{Z}$
$\cos x = a, a \leq 1$	(2)	$x = \pm \arccos a + 2\pi n, n \in \mathbf{Z}$
$tg x = a, a \in R$	(3)	$x = \operatorname{arctg} a + \pi n, \ n \in \mathbb{Z}$

1. Решить уравнение
$$2\sin^2 x - 3\sin x - 2 = 0$$
. Решение. Полагая $\sin x = y$, получаем уравнение $2y^2 - 3y - 2 = 0$, имеющее корни $y_1 = 2$, $y_2 = -\frac{1}{2}$. Если $y = -\frac{1}{2}$, то $\sin x = -\frac{1}{2}$, откуда $x = (-1)^{n+1}\frac{\pi}{6} + \pi n$. Если $y = 2$, то $\sin x = 2$. Это уравнение не имеет корней. Ответ. $x = (-1)^{n+1}\frac{\pi}{6} + \pi n$, $n \in \mathbb{Z}$.

2. Решить уравнение $2\sin^2 x - 3\cos x = 3$. Решение. Заменим $\sin^2 x$ на $1 - \cos^2 x$. Тогда уравнение примет вид $2(1 - \cos^2 x) - 3\cos x = 3$, или $2\cos^2 x + 3\cos x + 1 = 0$,

откуда $\cos x = -1$, $\cos x = -\frac{1}{2}$.

Если $\cos x = -1$, то $x = \pi + 2\pi n$, а если $\cos x = -\frac{1}{2}$, то $x = \pm \frac{2\pi}{3} + 2\pi$.

Ответ. $x = \pi + 2\pi n$, $x = \pm \frac{2\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$.

3. Решить уравнение tg x - 3 ctg x = 2.

Решение. Записав уравнение в виде $\lg x - \frac{3}{\lg x} = 2$ и умножив обе его части на $\lg x$, получим $\lg^2 x - 2\lg x - 3 = 0$, откуда

tg x = -1, tg x = 3. Если tg x = -1, то $x = -\frac{\pi}{4} + \pi n$, а если tg x = 3,

To $x = \operatorname{arctg} 3 + \pi n$.

В процессе решения мы умножили обе части уравнения на tg x, что могло привести к появлению посторонних корней, которые являются корнями уравнения tg x = 0. Так как значения x, при которых tg x = 0, не являются корнями уравнения $tg^2 x - 2 tg x - 3 = 0$, то это уравнение и исходное уравнение равносильны.

Ответ. $x = -\frac{\pi}{4} + \pi n$, $x = \arctan 3 + \pi n$, $n \in \mathbb{Z}$.

4. Решить уравнение $\cos 2x - 2\cos x = 0$.

Решение. Используя формулу $\cos 2x = 2\cos^2 x - 1$ и полагая $\cos x = t$, получаем уравнение $2t^2 - 2t - 1 = 0$, имеющее корни $t_1 = \frac{1-\sqrt{3}}{2}$, $t_2 = \frac{1+\sqrt{3}}{2}$. Так как $-1 < t_1 < 0$, $t_2 > 1$, то $x = \pm \arccos t_1 + 2\pi n$, где $\arccos t_1 = \arccos \frac{1-\sqrt{3}}{2} = \pi - \arccos \frac{\sqrt{3}-1}{2}$.

Ответ.
$$x = \pm \left(\pi - \arccos \frac{\sqrt{3} - 1}{2}\right) + 2\pi n, n \in \mathbb{Z}.$$

Уравнения, однородные относительно $\sin x$ и $\cos x$

Однородные уравнения — это уравнения вида

$$a \sin x + b \cos x = 0,$$

$$a \sin^2 x + b \sin x \cos x + c \cos^2 x = 0.$$

5. Решить уравнение $2\sin x + 5\cos x = 0$.

Решение. Заметим, что $\cos x \neq 0$. Действительно, если $\cos x = 0$, то из уравнения следует, что $\sin x = 0$, а это невозможно, так как $\sin^2 x + \cos^2 x = 1$. Поэтому, разделив обе части уравнения на $\cos x$, получим уравнение $2 \lg x + 5 = 0$, равносильное исходному. Отсюда находим $\lg x = -\frac{5}{2}$. Ответ. $x = -\arctan \frac{5}{2} + \pi n$, $n \in \mathbb{Z}$.

6. Решить уравнение $\sin^2 x - 3\sin x \cos x - 4\cos^2 x = 0$.

Решение. Разделив обе части данного уравнения на $\cos^2 x$, получаем равносильное уравнение $tg^2x - 3tgx - 4 = 0$, откуда tgx = 4, tgx = -1. Ответ. $x = \arctan 4 + \pi n$, $x = -\frac{\pi}{4} + \pi n$, $n \in \mathbb{Z}$.

Замечание. Уравнение $a\sin^2 x + b\sin x\cos x + c\cos^2 x = d$ можно свести к однородному, если воспользоваться тождеством $d = d(\sin^2 x + \cos^2 x)$.

Уравнения, решаемые с помощью разложения их левой части на множители

8. Решить уравнение $2\sin x\cos 2x - 1 + \sin x - 2\cos 2x = 0$. Решение. Сгруппируем слагаемые левой части уравнения и получим

$$2\cos 2x(\sin x - 1) + (\sin x - 1) = 0,$$

(\sin x - 1)(2\cos 2x + 1) = 0.

Поэтому исходное уравнение равносильно совокупности двух уравнений: $\sin x = 1$ и $\cos 2x = -\frac{1}{2}$. В подобных случаях говорят также, что уравнение распадается на два уравнения.

OTBET.
$$x = \frac{\pi}{2} + 2\pi n, x = \pm \frac{\pi}{3} + \pi n, n \in \mathbb{Z}.$$

9. Решить уравнение $\sin x \cos 3x = \cos x \sin 5x$.

Решение. Преобразуя в обеих частях уравнения произведение в сумму (см. формулу (5) § 11), запишем уравнение в виде

$$\frac{1}{2}(\sin 4x - \sin 2x) = \frac{1}{2}(\sin 6x + \sin 4x),$$
$$\sin 6x + \sin 2x = 0.$$

По формуле суммы синусов получаем $2\sin 4x\cos 2x = 0$. Заметим, что все корни уравнения $\cos 2x = 0$ содержатся среди корней уравнения $\sin 4x = 0$, и найдём все решения исходного уравнения: $x = \frac{\pi n}{4}$, $n \in \mathbb{Z}$.

10. Решить уравнение $\cos^2 2x + \sin^2 x = \cos^2 3x$.

Решение. Применяя формулы понижения степени, запишем уравнение в виде

$$\cos^2 2x = \frac{1 + \cos 6x}{2} - \frac{1 - \cos 2x}{2}, \quad \cos^2 2x = \frac{\cos 6x + \cos 2x}{2}.$$

По формулам суммы и разности косинусов последовательно преобразуем полученное уравнение:

$$\cos^2 2x = \cos 4x \cos 2x$$
, $\cos 2x (\cos 2x - \cos 4x) = 0$,
 $2\cos 2x \sin 3x \sin x = 0$.

Так как все корни уравнения $\sin x = 0$ содержатся среди корней уравнения $\sin 3x = 0$, то исходное уравнение равносильно совокупности уравнений $\cos 2x = 0$, $\sin 3x = 0$.

OTBET.
$$x = \frac{\pi}{4} + \frac{\pi n}{2}, x = \frac{\pi n}{3}, n \in \mathbb{Z}.$$