СИСТЕМЫ СЧИСЛЕНИЯ

Подготовили:

Гусаченко Е., Захарченко Д.

Сафронова А., Битюков Н.

Болотов А., Лучининов И.

СОДЕРЖАНИЕ

- 1. Определение системы счисления
- 2. Классификация систем счисления
 - 1. Непозиционные и позиционные
 - 2. По числу символов
- 3. Правила перевода из одной системы в другую
 - 1. Перевод из десятичной в двоичную
 - 2. Перевод из двоичной в десятичную
 - 3. Перевод и десятичной в шестнадцатеричную
 - 4. Перевод и шестнадцатеричной в десятичную
- 4. <u>Двоичная арифметика</u>
 - 1. <u>Сложение</u>
 - Вычитание
 - 3. <u>Умножение</u>
 - 4. <u>Деление</u>
- 5. Контрольные вопросы

ОПРЕДЕЛЕНИЕ СИСТЕМЫ СЧИСЛЕНИЯ

ОПРЕДЕЛЕНИЕ СИСТЕМЫ СЧИСЛЕНИЯ

Система счисления (англ. numeral system или system of numeration) — символический метод записи чисел, представление чисел с помощью письменных знаков.

Система счисления — это способ представления чисел и соответствующие ему правила действий над числами. Система счисления — это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цтефраммиными числами называются все положительныечисла, отрицательные числа и ноль.

- даёт представления множества чисел (целых и/или вещественных*);
- даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);
- отражает алгебраическую и арифметическую структуру чисел.

КЛАССИФИКАЦИЯ СИСТЕМ СЧИСЛЕНИЯ

ПОЗИЦИОННЫЕ И НЕПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ

ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ

Позиционными называются системы счисления, в которых значение цифры зависит от ее места (позиции) в записи числа.

Позиционной является привычная для нас в повседневной жизни **десятичная** система счисления, в которой значение (вес) цифры зависит от ее позиции в записи числа. В числе 1111 одна и та же цифра 1 означает последовательно единицу, десяток, сотню, тысячу.

Все системы счисления, используемые в информатике (двоичная, восьмеричная, шестнадцатеричная и т. д.), являются позиционными. Это важно, т. к. правила образования чисел, перевода из одной системы в другую, выполнения арифметических операций во всех позиционных системах аналогичны.

НЕПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ

Непозиционными называются системы счисления, в которых значение цифры не зависит от ее места (позиции) в записи числа.

Непозиционной системой счисления является, например, римская. Правила выполнения арифметических операций в непозиционных системах счисления совсем

$IA \sqcup LIA$	
ины	

Единицы	Десятки	Сотни	Тысячи
1 I	I 10 X 100 C		1000 M
2 11	20 XX	200 CC	2000 MM
3 111	30 XXX	300 CCC	3000 MMM
4 IV	40 XL	400 CD	
5 V	50 L	500 D	
6 VI	60 LX	600 DC	
7 VII	70 LXX	700 DCC	
8 VIII	80 LXXX	800 DCCC	
9 IX	90 XC	900 CM	

число	значение	описание
	1	черта
Λ	10	пятка
9	100	петля веревки
<u>₹</u>	1 000	кувшинка (или лотос)
S	10 000	палец
$eta_{\scriptscriptstyle{NLN}} \mathcal{Q}$	100 000	жаба или личинка
N. C.	1 000 000	человек с поднятыми вверх руками

Египетская система счисления – десятичная непозиционная система счисления

КЛАССИФИКАЦИЯ СИСТЕМ СЧИСЛЕНИЯ ПО ЧИСЛУ СИМВОЛОВ

САМЫЕ РАСПРОСТРАНЕННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ

Самые распространенные системы счисления:

- Двоичную систему счисления
- Троичную систему счисления
- Восьмеричную систему счисления
- Десятичную систему счисления
- Шестнадцатеричную систему счисления

ОСНОВАНИЕ СИСТЕМЫ СЧИСЛЕНИЯ

Основанием системы счисления называется количество различных символов (цифр), используемых в каждом из разрядов числа для его изображения в данной системе счисления. Различают позиционные и непозиционные системы счисления.

Развернутая форма числа в системе счисления с основанием q:

$$A_q = a_{n-1} * q^{n-1} + a_{n-2} * q^{n-2} + \cdots + a_0 * q^0 + a_{-1} * q^{-1} + \cdots + a_{-m} * q^{-m}$$

Где: A_q - число в q-ичной системе счисления

q – основание системы счисления

 a_i - цифры, принадлежащие алфавиту данной системе счисления

n – число целых разрядов числа

т – число дробных разрядов числа

ДВОИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ

Двоичная система счисления— позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях, двоичная система используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах.

В двоичной системе счисления числа записываются с помощью двух символов (0 и 1). Чтобы не путать, в какой системе счисления записано число, его снабжают указателем справа внизу. Например, число в десятичной системе 5_{10} , в двоичной 101_2 . Иногда двоичное число обозначают префиксом 0b или символом & (амперсанд), например 0b101 или соответственно &101.

В двоичной системе счисления (как и в других системах счисления, кроме десятичной) знаки читаются по одному. Например, число 101₂ произносится «один ноль один».

Двоичная система	Десятичная система
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7
1000	8
1001	9
1010	10

ТРОИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ

Троичная система счисления — позиционная система счисления с целочисленным основанием, равным 3.

В распечатках ЭВМ «Сетунь» использовалось кодирование {1,0,1}. Троичные цифры можно обозначать любыми тремя знаками {A,B,C}, но при этом дополнительно нужно указать старшинство знаков, например, A<B<C.

Практическое применение:

- Работая в палате мер и весов, Д. И. Менделеев, с учётом симметричной троичной системы счисления, разработал цифровой ряд значений весов разновеса для взвешивания на лабораторных весах, который используется по сей день.
- В распечатках ЭВМ «Сетунь» использовалось кодирование {1,0,1}. Троичные цифры можно обозначать любыми тремя знаками {A,B,C}, но при этом дополнительно нужно указать старшинство знаков, например, A<B<C.

«Се́тунь»— малая ЭВМ на основе троичной логики, разработанная в вычислительном центре Московского государственного университета в 1959 году.

Трайт — минимальная непосредственно адресуемая единица главной памяти «Сетуни-70» Брусенцова. Трайт равен 6 тритам (почти 9,51 бита). В «Сетуни-70» интерпретируется как знаковое целое число в диапазоне от -364 до 364. Трайт достаточно велик, чтобы закодировать, например, алфавит, включающий русские и латинские буквы (включая заглавные и строчные), цифры, математические и служебные знаки. В трайте может содержаться целое число как девятеричных, так и двадцатисемеричных цифр.

ТРОИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ

Существует в двух вариантах: несимметричная и симметричная.

В несимметричной троичной системе счисления чаще применяются цифры {0,1,2}, а в троичной симметричной системе счисления знаки {-,0,+}, {-1,0,+1}, {1,0,1}, {1,0,1}, {i,0,1}, {N,O,P}, {N,Z,P} и цифры {2,0,1}, {7,0,1}.

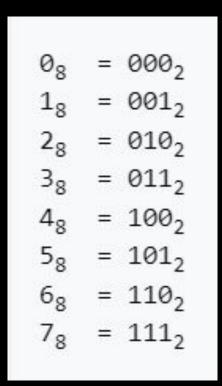
Десятичное число	0	1	2	3	4	5	6	7	8	9	10
Троичное число	0	1	2	10	11	12	20	21	22	100	101

ВОСЬМЕРИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ

Восьмеричная система счисления — позиционная целочисленная система счисления с основанием 8. Для представления чисел в ней используются цифры от 0 до 7.

Восьмеричная система чаще всего используется в областях, связанных с цифровыми устройствами. Характеризуется лёгким переводом восьмеричных чисел в двоичные и обратно, путём замены восьмеричных чисел на триплеты* двоичных. Широко использовалась в программировании и компьютерной документации, однако позднее была почти полностью вытеснена шестнадцатеричной.

*Триплет — комбинация из трёх последовательно расположенных чисел.



ПРИМЕНЕНИЕ ВОСЬМЕРИЧНОЙ СИСТЕМЫ СЧИСЛЕНИЯ

Восьмеричная система применяется при выставлении прав доступа к файлам и прав исполнения для участников в Linux-системах.

Восьмеричная система счисления употребляется в ЭВМ как вспомогательная для записи информации в сокращённом виде. Ранее широко использовалась в программировании и компьютерной документации, в настоящее время почти полностью вытеснена 16-ричной.

ДЕСЯТИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ

Десятичная система счисления — позиционная система счисления по целочисленному основанию 10. Одна из наиболее распространённых систем. В ней используются цифры 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, называемые арабскими цифрами. Предполагается, что основание 10 связано с количеством пальцев на руках у человека.

Один десятичный разряд в десятичной системе счисления иногда называют декадой. В цифровой электронике одному десятичному разряду десятичной системы счисления соответствует один десятичный триггер.

Десятичная непозиционная система счисления с единичным кодированием десятичных цифр (от 1 до 1 000 000) возникла во второй половине третьего тысячелетия до н. э. в Древнем Египте (египетская система счисления*).

*Египетская система счисления — непозиционная система счисления, которая употреблялась в Древнем Египте вплоть до начала X века н. э. В этой системе цифрами являлись иероглифические символы; они обозначали числа 1, 10, 100 и т. д. до миллиона.

АМЭТОЛО КАНРИТКОЭД СЧИСЛЕНИЯ

Древнейшая известная запись позиционной десятичной системы обнаружена в Индии в 595 г. Нуль в то время применялся не только в Индии, но и в Китае. В этих старинных системах для записи одинакового числа использовались символы, рядом с которыми дополнительно помечали, в каком разряде они стоят. Потом перестали помечать разряды, но число всё равно можно прочитать, так как у каждого разряда есть своя позиция. А если позиция пустая, её нужно пометить нулём. В поздних вавилонских текстах такой знак стал появляться, но в конце числа его не ставили. Лишь в Индии нуль окончательно занял своё место, эта запись распространилась затем по всему миру.

Индийская нумерация пришла сначала в арабские страны, затем и в Западную Европу. О ней рассказал среднеазиатский математик аль-Хорезми. Простые и удобные правила сложения и вычитания чисел, записанных в позиционной системе, сделали её особенно популярной. А поскольку труд аль-Хорезми был написан на арабском, то за индийской нумерацией в Европе закрепилось иное название — «арабская» (арабские цифры).

ШЕСТНАДЦАТЕРИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ

Шестнадцатеричная система счисления — позиционная система счисления по основанию 16.

В качестве цифр этой системы счисления обычно используются цифры от 0 до 9 и латинские буквы от А до F. Буквы A, B, C, D, E, F имеют значения 10_{10} , 11_{10} , 12_{10} , 13_{10} , 14_{10} , 15_{10} соответственно.

В стандарте Юникода номер символа принято записывать в шестнадцатеричном виде, используя не менее 4 цифр (при необходимости— с ведущими нулями).

Шестнадцатеричный цвет — запись трёх компонентов цвета (RGB) в шестнадцатеричном виде.

Десятичная система						
0	0	0				
1	1	1				
2	10	2				
3	11	3				
4	100	4				
5	101	5				
6	110	6				
7	111	7				
8	1000	8				
9	1001	9				
10	1010	A				
11	1011	В				
12	1100	C				
13	1101	D				
14	1110	Е				
15	1111	F				
16	10000	10				

ПРИМЕНЕНИЕ ШЕСТНАДЦАТЕРИЧНОЙ СИСТЕМЫ СЧИСЛЕНИЯ

Широко используется в низкоуровневом программировании и компьютерной документации, поскольку в современных компьютерах минимальной адресуемой единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами. Такое использование началось с системы IBM/360, где вся документация использовала шестнадцатеричную систему, в то время как в документации других компьютерных систем того времени (даже с 8-битными символами, как, например, PDP-11 или БЭСМ-6) использовали восьмеричную систему.

ПРИМЕНЕНИЕ ШЕСТНАДЦАТЕРИЧНОЙ СИСТЕМЫ СЧИСЛЕНИЯ

Использование MAC-адресов является одним из наиболее важных аспектов технологии локальной сети Ethernet. MAC-адреса используют шестнадцатеричную систему счисления.

В системе счисления с основанием 16 используются цифры от 0 до 9 и буквы от А до F. На рис. 1 показаны соответствующие десятичные и шестнадцатеричные значения для двоичного кода 0000—1111. Нам проще представить значение в виде одной шестнадцатеричной цифры, чем в виде четырёх двоичных битов.

Если 8 бит (байт) — это общепринятая бинарная группа, двоичный код 00000000—11111111 может быть представлен в шестнадцатеричной системе исчисления в качестве диапазона 00-FF. Чтобы заполнить 8-битное представление, всегда отображаются ведущие нули. Например, двоичное значение 0000 1010 показано в шестнадцатеричной системе как 0А.

Шестнадцатеричное значение обычно представлено в тексте значением, которое располагается после 0х (например, 0х73) или подстрочного индекса 16. В остальных, более редких случаях, за ним может располагаться Н (например, 73Н). Однако, поскольку подстрочный текст не распознаётся в командной строке или средах программирования, перед техническим представлением шестнадцатеричных значений стоит «Ох» (нулевой X). Так, приведённые выше примеры будут отображаться как 0х0А и 0х73 соответственно.

Шестнадцатеричная система счисления используется для представления MAC-адресов Ethernet и IPадресов версии 6.

ПРАВИЛА ПЕРЕВОДА ИЗ ОДНОЙ СИСТЕМЫ В ДРУГУЮ

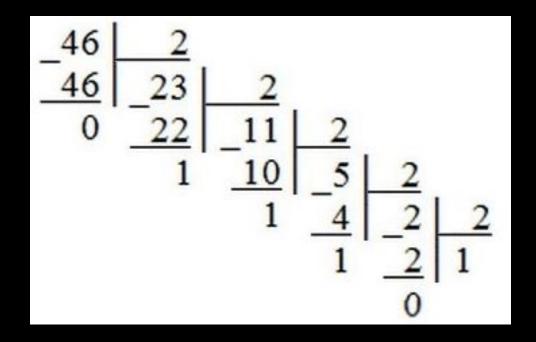
ПРАВИЛА ПЕРЕВОДА ИЗ ДЕСЯТИЧНОЙ СИСТЕМЫ СЧИСЛЕНИЯ В ДВОИЧНУЮ

ТАБЛИЦА ПЕРЕВОДА ДЕСЯТИЧНЫХ ЧИСЕЛ ОТ 0 ДО 20 В ДВОИЧНУЮ СИСТЕМУ СЧИСЛЕНИЯ.

десятичное число	двоичное число	десятичное число	двоичное число	
0	0000	11	1011	
1	0001	12	1100	
2	2 0010 13		1101	
3	0011 14		1110	
4	0100	15	1111	
5	0101 16		10000	
6	0110	17	10001	
7	7 0111 18		10010	
8	8 1000 19		10011	
9	1001	20	10100	
10	1010	и т.д.		

МЕТОД ПЕРВЫЙ: СОКРАЩЕННОЕ ДЕЛЕНИЕ С ОСТАТКОМ

Чтобы перевести целое положительное десятичное число в двоичную систему счисления, нужно это число разделить на 2. Полученное частное снова разделить на 2, и дальше до тех пор, пока частное не окажется меньше 2. В результате записать в одну строку последнее частное и все остатки, начиная с последнего.



МЕТОД ВТОРОЙ: СРАВНЕНИЕ УМЕНЬШАЮЩИХСЯ СТЕПЕНЕЙ И ВЫЧИТАНИЕ

Допустим, требуется перевести число 637 десятичной системы в двоичную систему. Делается это следующим образом:

- 1. Отыскивается максимальная степень двойки, чтобы два в этой степени было меньше или равно исходному числу. В нашем случае это 9, т.к. $2^9 = 512$, а $2^{10} = 1024$, что больше нашего начального числа. Таким образом, мы получили число разрядов результата. Оно равно 9+1=10. Значит, результат будет иметь вид 1хххххххххх, где вместо х может стоять 1 или 0.
- 2. Найдем вторую цифру результата. Возведем двойку в степень 9 и вычтем из исходного числа: $637-2^9=125$. Затем сравниваем с числом $2^8=256$. Так как 125 меньше 256, то девятый разряд будет 0, т.е. результат уже примет вид 10xxxxxxxxxx.

- 3. $2^7 = 128 > 125$, значит и восьмой разряд будет нулём.
- 4. $2^6=64$, то седьмой разряд равен 1.
- 5. 125-64=61 Таким образом, мы получили четыре старших разряда и число примет вид 10011хххххх.
- 6. 2⁵=32 и видим, что 32 < 61, значит шестой разряд равен 1 (результат 100111хххх), остаток 61-32=29.
- 7. 2⁴=16 < 29 пятый разряд 1 => 10011111xxx. Остаток 29-16=13.
- 8. $2^3=8 < 13 => 100111111xx. 13-8=5.$
- 9. $2^2=4 < 5 => 100111111xx$, octatok 5-4=1.
- 10. 2¹=2 > 1 => 1001111110х, остаток 2-1=1. 20=1 => 1001111101. Это и будет конечный результат.

ПЕРЕВОД ДРОБНОГО ДЕСЯТИЧНОГО ЧИСЛА В ДВОИЧНОЕ

Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму:

- Вначале переводится целая часть десятичной дроби в двоичную систему счисления;
- Затем дробная часть десятичной дроби умножается на основание двоичной системы счисления:
- В полученном произведении выделяется целая часть, которая принимается в качестве значения первого после запятой разряда числа в двоичной системе счисления;
- Алгоритм завершается, если дробная часть полученного произведения равна нулю или если достигнута требуемая точность вычислений. В противном случае вычисления продолжаются с предыдущего шага.

Пример 1: Перевести число 0.12510 в двоичную систему счисления.

Решение: $0.125 \cdot 2 = 0.25$ (0 - целая часть, которая станет первой цифрой результата),

 $0.25 \cdot 2 = 0.5$ (0 - вторая цифра результата),

0.5.2 = 1.0 (1 - третья цифра результата, а так как дробная часть равна нулю, то переводзавершён). Ответ: 0.12510 = 0.0012

Пример 2: Требуется перевести дробное десятичное число 291,725 в дробное двоичное число.

291 = 100100011₂; дробную часть умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа:

$$.725 * 2 = 1,45$$

$$.45 * 2 = 0.9$$

$$.9 *2 = 1.8$$

$$.8 * 2 = 1.6$$

$$.6 * 2 = 1.2$$

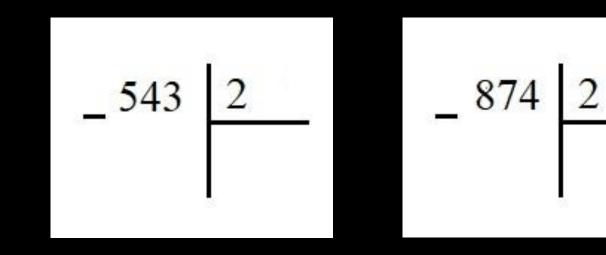
$$.2 * 2 = 0.4$$

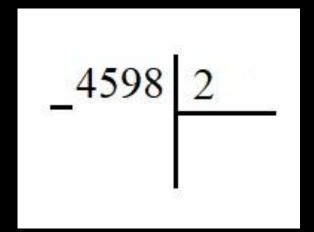
$$.4 * 2 = 0, 8$$

$$.8 * 2 = 1,6$$

и т. д. , до бесконечности в данном случае. Итак, имеем: 291,725 = 100100011,10111001...,

ПРИМЕРЫ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

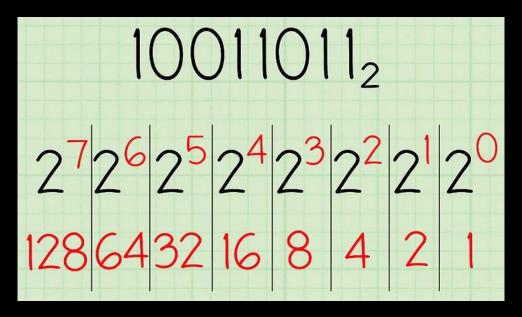


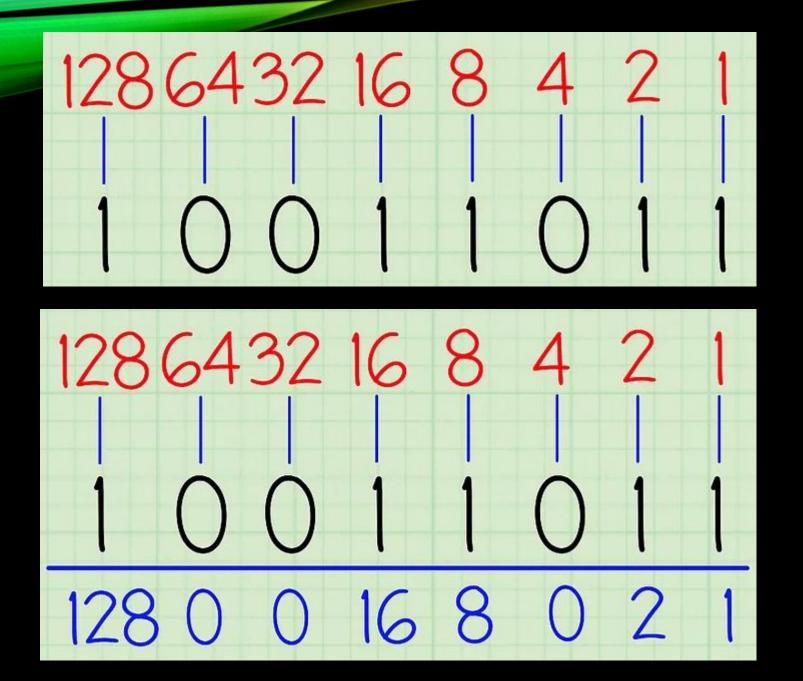


ПРАВИЛА ПЕРЕВОДА ИЗ ДВОИЧНОЙ СИСТЕМЫ СЧИСЛЕНИЯ В ДЕСЯТИЧНУЮ

МЕТОД ПЕРВЫЙ: ИСПОЛЬЗУЯ ПОЗИЦИОННУЮ НОТАЦИЮ

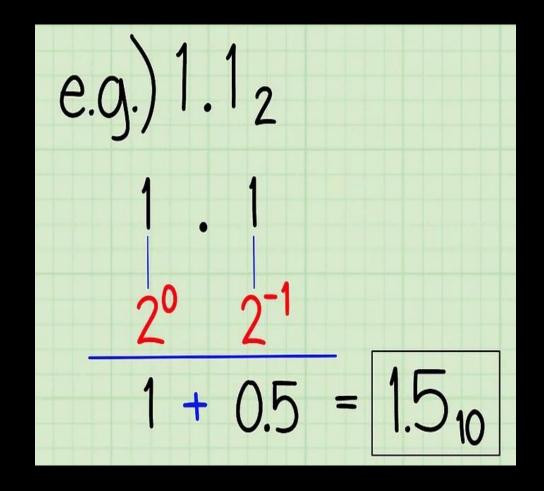
Для преобразования числа из двоичной системы в десятичную необходимо пронумеровать разряды двоичного числа справа налево, начиная с 0, после чего сложить степени числа 2, умноженные на значение соответствующего разряда.





10011011₂ = 155

Используйте данный метод, чтобы преобразовать двоичное число с десятичной точкой в десятичную форму. Вы можете использовать данный метод даже если вы хотите преобразовать двоичное число, такое как 1.1, в десятичное. Все, что вам необходимо знать — это то, что число в левой части десятичного числа - это обычное число, а число в правой части Десятичного числа — это число "делений надвое", или $1 \times (1/2)$. "1" слева от десятичного числа соответствует 2^{0} , или 1. 1 справа от десятичного числа соответствует 2-1, или 0.5. Сложите 1 и 0.5 и вы получите 1.5, которое является ЭКВИВОЛЕНТОМ 1.1_2 в десятичном виде.



МЕТОД ВТОРОЙ: ИСПОЛЬЗУЯ УДВОЕНИЕ

Данный метод не использует степени. Поэтому он проще для преобразования больших чисел в голове – вам нужно только все время помнить итог. Предположим, вы работаете с числом 1011001₂.

1. Начиная слева, удвойте ваш предыдущий итог и добавьте текущую цифру. Так как вы работаете с двоичным числом 1011001₂, ваша первая цифра слева равна 1. Ваш предыдущий итог равен 0, так как вы еще не начали. Вам необходимо удвоить предыдущий итог, 0, и добавить 1, текущую цифру. 0 х 2 + 1 = 1, так что ваш новый итог равен

10110012

 $0 \times 2 + 1 = 1$

2. Удвойте ваш текущий итог и добавьте следующую цифру слева. Ваш текущий итог равен 1, а ваша новая цифра 0. Так что удвойте 1 и добавьте 0. 1 x 2 + 0 = 2. Ваш новый итог равен 2.

$$1011001_2$$

 $0 \times 2 + 1 = 1$
 $1 \times 2 + 0 = 2$
 $2 \times 2 + 1 = 5$

3. Выполняя каждый раз одно и тоже действие, у вас должно получиться следующее:

$$1011001_{2}$$

 $0 \times 2 + 1 = 1$
 $1 \times 2 + 0 = 2$
 $2 \times 2 + 1 = 5$
 $5 \times 2 + 1 = 11$
 $11 \times 2 + 0 = 22$

$$1011001_2$$

 $0 \times 2 + 1 = 2$
 $1 \times 2 + 1 = 5$
 $5 \times 2 + 1 = 11$
 $11 \times 2 + 0 = 22$
 $22 \times 2 + 0 = 44$

$$101001_{2}$$
 $0 \times 2 + 1 = 1$
 $1 \times 2 + 0 = 2$
 $2 \times 2 + 1 = 11$
 $11 \times 2 + 0 = 22$
 $22 \times 2 + 0 = 44$
 $44 \times 2 + 1 = 89$

1011001₂ = 89

 $1100100_2 = ?$

 $1011001_2 = ?$

 $101011_2 = ?$

В шестнадцатеричной системе счисления существует таблица соответствия десятичных и шестнадцатеричных чисел, которая используется при переводе из одной системы в другую:

Десятичная система счисления	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Шестнадцат еричная система счисления	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F

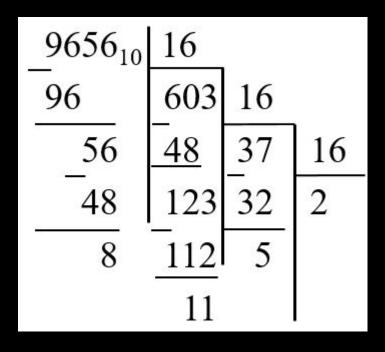
В свое же время для перевода из десятичной системы счисления, число нужно делить на 16 до тех пор пока оно не сможет разделиться. Из остатков при делении составляется число в шестнадцатеричной системе счисления справа налево.

Например переведем число 1356 из десятичной системы счисления в шестнадцатеричную:

1356 ₁₀	16	
128	84	16
76	80	5
64	4	
12		

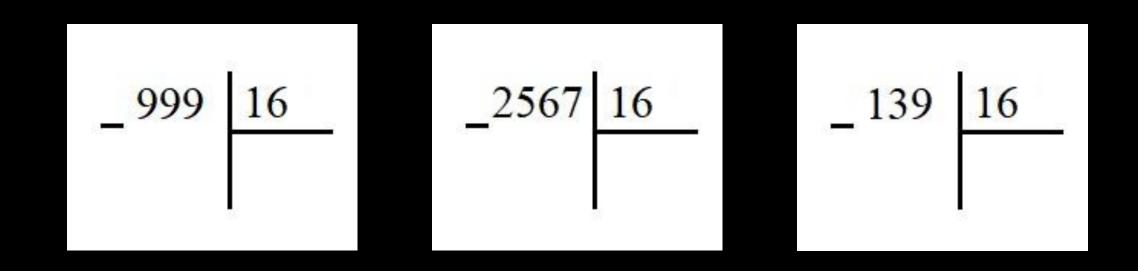
Ответ: $135\overline{6}_{10} = 54\overline{C}_{16}$

Также для примера возьмем число побольше, например 9656, и переведем его шестнадцатеричную систему счисления:



Можно заметить, что в остатке у нас есть число 11, которое по правилам таблицы соответствия десятичных и шестнадцатеричных чисел, заменяется на символ «В» при переводе числа.

Otbet: $965\overline{6}_{10} = 25B8_{16}$



ПРАВИЛА ПЕРЕВОДА ИЗ ШЕСТНАДЦАТЕРИЧНОЙ СИСТЕМЫ СЧИСЛЕНИЯ В ДЕСЯТИЧНУЮ

ПЕРЕВОД ИЗ ШЕСТНАДЦАТЕРИЧНОЙ СИСТЕМЫ СЧИСЛЕНИЯ В ДЕСЯТИЧНУЮ

Для перевода числа из любой системы счисления в десятичную существует общая

формула:

$$A_n = a_{n-1} \cdot q^{n-1} + a_{n-2} \cdot q^{n-2} + \dots + a_o \cdot q^o$$

Для перевода из шестнадцатеричной системы счисления в десятичную преобразуем формулу:

$$A_{16} = a_{n-1} \cdot 16^{n-1} + a_{n-2} \cdot 16^{n-2} + \dots + a_0 \cdot 16^{o}$$

Возьмем для примера:

$$A2F_{16}=A \cdot 16^2 + 2 \cdot 16^1 + F \cdot 16^0 = 10 \cdot 256 + 2 \cdot 16 + 15 \cdot 1 = 2560 + 32 + 15 = 2607_{10}$$

Otbet: $A2F_{16} = 2607_{10}$

Также можно переводить дробные числа из шестнадцатеричной системы счисления в десятичную.

Например:

$$0.2A9_{16} = 0 \cdot 16^{0} + 2 \cdot 16^{-1} + A \cdot 16^{-2} + 9 \cdot 16^{-3} = 0 \cdot 1 + 2 \cdot 0.0625 + 10 \cdot 0.00390625 + 9 \cdot 0.000244140625$$
$$= 0 + 0.125 + 0.0390625 + 0.002197265625 = 0.166259765625_{10}$$

Otbet: $0.2A9_{16} = 0.166259765625_{10}$

$$104.F2_{16} = 1 \cdot 16^{2} + 0 \cdot 16^{1} + 4 \cdot 16^{0} + F \cdot 16^{-1} + 2 \cdot 16^{-2} = 1 \cdot 256 + 0 \cdot 16 + 4 \cdot 1 + 15 \cdot 0.0625 + 2 \cdot 0.00390625 = 256 + 0 + 4 + 0.9375 + 0.0078125 = 260.9453125_{10}$$

Otbet: $104,F2_{16} = 260,9453125_{10}$

413₁₆=?

 $2A4_{16}=?$

 $17C_{16} = ?$

ДВОИЧНАЯ АРИФМЕТИКА

ДВОИЧНАЯ АРИФМЕТИКА

Выполнение арифметических действий в любых позиционных системах счисления производится по тем же правилам, которые используются в десятичной системе счисления.

Так же, как и в десятичной системе счисления, для выполнения арифметических действий необходимо знать таблицы сложения (вычитания) и умножения.

Сложение	Вычитание	Умножение
0 + 0 = 0	0 0 = 0	$0 \cdot 0 = 0$
0 + 1 = 1	1 — 0 = 1	0 · 1 = 0
0 + 1 = 1	1 — 1 = 0	1 · 0 = 0
1 + 1 = 10	10 — 1 = 0	1 · 1 = 1

СЛОЖЕНИЕ ДВОИЧНЫХ ЧИСЕЛ

Сложение в двоичной системе счисления выполняется по тем же правилам, что и в десятичной. Два числа записываются в столбик с выравниванием по разделителю целой и дробной части и при необходимости дополняются справа незначащими нулями. Сложение начинается с крайнего правого разряда. Две единицы младшего разряда объединяются в единицу старшего.

Пример: $1011,10_2 + 1010,11_2$

СЛОЖЕНИЕ ДВОИЧНЫХ ЧИСЕЛ

Интересна также ситуация, когда складываются больше двух чисел. В этом случае возможен перенос через несколько разрядов.

Пример: $111,1_2 + 111,0_2 + 101,1_2$

```
1 6 t 1 t t 1 t t 1 t t 1 t t 1 t t 1 t t 1 t t 1 t 1 t t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t
```


 $+\frac{100110}{11100}$

 $+\frac{100011}{1010100}$

 $+\frac{110101}{101011}$

СЛОЖЕНИЕ ДВОИЧНЫХ ЧИСЕЛ

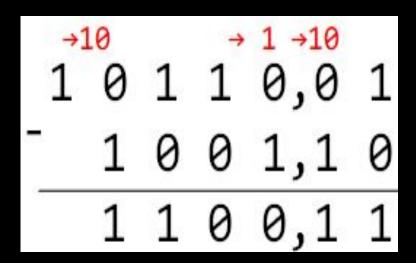
При сложении в разряде единиц (разряд 0) оказывается 4 единицы, которые, объединившись, дают 100_2 . Поэтому из нулевого разряда в первый разряд переносится 0, а во второй — 1.

Аналогичная ситуация возникает во втором разряде, где с учетом двух перенесенных единиц получается число $5=101_2$. 1 остается во втором разряде, 0 переносится в третий и 1 переносится в четвёртый.

ВЫЧИТАНИЕ ДВОИЧНЫХ ЧИСЕЛ

В случаях, когда занимается единица старшего разряда, она дает две единицы младшего разряда. Если занимается единица через несколько разрядов, то она дает по одной единице во всех промежуточных нулевых разрядах и две единицы в том разряде, для которого занималась.

Пример: $10110,01_2 - 1001,10_2$



 $- \frac{10111001}{01101110}$

-1000000001 10010110

-100001101 100000110

УМНОЖЕНИЕ ДВОИЧНЫХ ЧИСЕЛ

Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения. Ввиду чрезвычайной простоты таблицы умножения в двоичной системе, умножение сводится лишь к сдвигам множимого и сложениям.

УМНОЖЕНИЕ ДВОИЧНЫХ ЧИСЕЛ

Пример: 11011111₂ * 101101₂

```
x 1101111
1101111
1101111
1101111
1101111
1001110000011
```


* \frac{1001100}{101111}

* 1011 110101 * 1000011 1010011

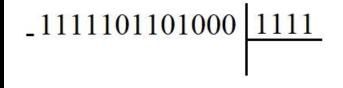
ДЕЛЕНИЕ ДВОИЧНЫХ ЧИСЕЛ

Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто, ведь очередная цифра частного может быть только нулем или единицей.

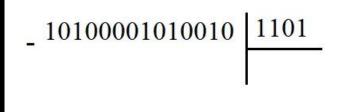
ДЕЛЕНИЕ ДВОИЧНЫХ ЧИСЕЛ

 \blacksquare ример: $111100_2/1010_2$

```
\begin{array}{c|cccc} -111100 & 1010 \\ \hline 1010 & 110 \\ \hline 1010 & \\ \hline 1010 & \\ \hline 0 & \\ \end{array}
```

_1101110101000 1100



КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Система счисления и её функции
- 2. Правила двоичного вычитания
- 3. Отличия позиционной и непозиционной системы счисления
- 4. Правила двоичного сложения
- 5. Основание системы счисления это ...?
- 6. Область применения восьмеричной системы счисления
- 7. Правила двоичного деления
- 8. История десятичной системы счисления
- 9. Правила двоичного умножения
- 10. Область применения шестнадцатеричной системы счисления

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Выполнить перевод в десятичную систему счисления: 1100101_2 , 123_{16} , $34A_{16}$
- 2. К функциям систем счисления не относится:
 - а) даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);
 - b) отражает алгебраическую и арифметическую структуру чисел;
 - с) служит средством организации экономической жизни;
 - d) даёт представления множества чисел;
- 3. Выполнить перевод в двоичную систему счисления: $23B_{16}$, 481_{10} , 344_{10}
- 4. МАС-адреса используют ... систему счисления.
- 5. Какая система широко используется в программировании и компьютерной документации?
 - а) Шестнадцатеричная;
 - b) <u>Двоичная</u>;
 - с) Троичная;
 - d) Непозиционная;
- 6. К позиционным системам счисления относят:
 - а) Европейская;
 - b) <u>Египетская</u>;
 - с) Восьмеричную;
 - d) Шестнадцатеричную;
- 7. Выполнить перевод в шестнадцатеричную систему счисления: 555_{10} , 101011_{2} , 1234_{10}

