Молекулярная физика.

- Лектор:
- Парахин А.С., к. ф.-м. наук, доцент.

2.3. Первое начало термодинамики. Теплота и работа.

- Внутренняя энергия ТДС.
- Определение. Полная кинетическая энергия молекул системы и их потенциальная энергия во взаимном поле называется внутренней энергией термодинамической системы. Обозначается *U* и измеряется в Джоулях.
- Progr D: Progr E: Progr F: Progr G: Progr H:

Обмен энергией.

• В термодинамических процессах при изменении термодинамических параметров обязательно происходит обмен энергией системы с окружающими телами. Этот обмен, в отличие от механики, может происходить тремя различными путями.

Теплообмен.

• Первый способ обусловлен взаимодействием молекул системы с молекулами окружающих тел без макроскопического перемещения тел. Возможно лишь перемещение молекул. В результате такого взаимодействия кинетическая энергия теплового движения молекул начнёт перетекать от системы к окружающим телам или наоборот.

Направление потока энергии.

• Направление потока энергии зависит от соотношения средних кинетических энергий молекул системы и окружающих тел. Если средняя кинетическая энергия молекул окружающих тел больше, чем у системы, энергия будет перетекать к системе и наоборот. С точки зрения температуры это означает, нагретые тела будут остывать, а холодные нагреваться.

Теплопередача.

 Такой способ передачи энергии называется теплопередачей, а энергия, переданная таким путём, называется теплотой. Обозначается теплота Q. Теплота считается положительной, если она передана системе, и отрицательной, если от системы. Поскольку теплота есть энергия, она измеряется в Джоулях.

Теплопередача

• Progr D: Progr E: Progr F: Progr G: Progr H:

Теплопроводность, конвекция, излучение.

• Теплопередача при непосредственном тепловом контакте называется теплопроводностью. Если теплота передаётся потоком некоторой жидкости или газа, способ называется конвекцией. Если теплота передаётся электромагнитными волнами, способ называется излучением.

Работа.

• Второй способ передачи энергии связан с макроскопическим движением. Это приводит либо к выделению тепла за счёт трения, либо к изменению объёма системы. Этот способ передачи энергии называется работой. При изменении объёма работа определяется давлением и величиной изменения объёма.

Расчёт работы.

- Пусть в некотором сосуде под поршнем находится газ под давлением p. Тогда со стороны газа на поршень действует сила
- F = pS.
- Если поршень перемещается на элементарное расстояние dl, эта сила совершит работу
- dA = Fdl = pSdl.
- Но Sdl=dV есть изменение объёма газа.
- Поэтому dA = pdV.

Знак работы.

- При этом если объём увеличивается, работа положительна и совершается газом над внешними телами. Если объём уменьшается, то работа отрицательна и совершается внешними телами над газом.
- При изохорическом процессе объём не меняется, поэтому работа равна нулю. При изобарическом процессе давление постоянная величина, поэтому работа равна произведению давления на разность объёмов системы A = p(V₂ - V₁).

Работа.

• Progr D: Progr E: Progr F: Progr G: Progr H:

Закон сохранения энергии в термодинамике.

- При сообщении системе тепла или совершения над ней работы в общем случае изменяется и внутренняя энергия системы. Однако это изменение, как показывает опыт, происходит в полном соответствии с законом сохранения энергии. А именно
- $\Delta Q = \Delta U + A$.
- Progr D: Progr E: Progr F: Progr G: Progr H:

Первое начало термодинамики.

- Это утверждение и носит название первого начала термодинамики. Оно гласит: «Теплота, подводимая к системе, расходуется на увеличение внутренней энергии системы и на совершение ею работы».
- Это утверждение может быть записано и для элементарных величин
- dQ = dU + dA = dU + pdV
- Progr D: Progr E: Progr F: Progr G: Progr H:

2.4. Понятие теплоёмкости.

• При сообщении системе теплоты её температура может меняться. В одних случаях это изменение больше, в других меньше. Для характеристики величины изменения температуры системы при сообщении ей некоторого тела вводят понятие теплоёмкости.

Теплоёмкость.

 Определение. Количество теплоты, необходимое для изменения температуры системы на один Кельвин, называется теплоёмкостью системы. Обозначают теплоёмкость с и пишут

•
$$C = \frac{dQ}{dT}$$
.

•
$$[C] = \frac{[Q]}{[T]} = \frac{\mathcal{A}\mathcal{K}}{\mathcal{K}}$$

Первое начало ТД для изохорического процесса.

- Теплоёмкость системы не является независимой характеристикой системы. Её величина зависит от процесса, в котором участвует система.
- Пусть систем участвует в изохорическом процессе V=const. Тогда работа, совершаемая системой, равна нулю, и из первого начала термодинамики следует
- dQ = dU.

Теплоёмкость при постоянном объёме.

• Разделим это равенство на элементарное изменение температуры

•
$$\frac{dQ}{dT} = \frac{dU}{dT}$$

• Но слева стоит теплоёмкость системы, т.к. объём в этом процессе остаётся постоянным, эту теплоёмкость называют теплоёмкостью при постоянном объёме и обозначают c_V . Тогда

•
$$C_V = \frac{dU}{dT}$$
.

Теплоёмкость при постоянном объёме 2.

■ Теплоёмкость при постоянном объёме равна производной от внутренней энергии системы по температуре. При этом объём остаётся величиной постоянной. Как уже отмечалось выше, в этом случае постоянную величину указывают внизу за скобками, т.е.

•
$$C_V = \left(\frac{\partial U}{\partial T}\right)_V$$
.

• Progr D: Progr E: Progr F: Progr G: Progr H:

Для идеального газа.

- Для идеального газа взаимодействие между молекулами отсутствует, поэтому внутренняя энергия от объёма не зависит, а зависит только от температуры. Поэтому производная внутренней энергии по температуре есть обыкновенная производная. Поэтому для идеального газа справедливо
- $dU = C_V dT$.
- Ещё раз нужно отметить, что это равенство справедливо только для идеального газа.

Внутренняя энергия идеального газа.

 Для идеального газа внутренней энергией является только кинетическая энергия молекул:

•
$$U = \sum_{j=1}^{N} \frac{mv_j^2}{2} = N \frac{1}{N} \sum_{j=1}^{N} \frac{mv_j^2}{2} = N \langle K \rangle = N \frac{i}{2} k_B T = \frac{N}{N_a} \frac{i}{2} N_a k_B T = \frac{i}{2} \nu R T$$

• Здесь i — число степеней свободы.

Теплоёмкость идеального газа.

- Продифференцируем по температуре:
- $C_V = \frac{i}{2} \nu R$
- Это интегральная теплоёмкость. Поделим на число молей, получим молярную теплоёмкость: $C_{\mu V} = \frac{i}{2} R$. Поделим на молярную массу, получим удельную теплоёмкость идеального газа:
- $c_V = \frac{i}{2\mu}R = \frac{i}{2N_a m}N_a k_B = \frac{i}{2m}k_B$

Теплоёмкость в изобарическом процессе.

• Предположим теперь, что система участвует в изобарическом процессе. В этом случае теплоёмкость называется теплоёмкостью при постоянном давлении и обозначается $c_{\mathcal{p}}$. Поделив формулу первого начала термодинамики на элементарное изменение температуры, получим:

•
$$\frac{dQ}{dT} = \frac{dU}{dT} + p \frac{dV}{dT}$$
.

Для произвольных ТДС.

- В данном случае $\frac{dQ}{dT} = C_p$
- Для произвольных термодинамических систем: $dU = \left(\frac{\partial U}{dT}\right)_V dT + \left(\frac{\partial U}{dV}\right)_T dV$
- a $\frac{dV}{dT} = \left(\frac{\partial V}{\partial T}\right)_p$.
- Так что из (2.4.7) находим
- $C_p = \left(\frac{\partial U}{\partial T}\right)_V + \left[\left(\frac{\partial U}{\partial V}\right)_T + p\right] \left(\frac{\partial V}{\partial T}\right)_p$

Теплоёмкость c_p для идеального газа.

 Если система представляет собой идеальный газ, то

•
$$\left(\frac{\partial U}{\partial V}\right)_T = 0$$
, $\left(\frac{\partial U}{\partial T}\right)_V = C_V$, $\left(\frac{\partial V}{\partial T}\right)_p = \frac{vR}{p}$,

- согласно уравнению Менделеева-Клапейрона, поэтому
- $C_p = C_V + \nu R$. Это равенство называется уравнением Майера.

Теплоёмкость на один моль.

 Это равенство устанавливает связь между теплоёмкостями при постоянном давлении и постоянном объёме для идеального газа.
Разделим это равенство на число молей

•
$$\frac{C_p}{v} = \frac{C_V}{v} + R$$
.

- Это равенство также называется уравнением Майера.
- Progr D: Progr E: Progr F: Progr G: Progr H: