ЛЕКЦИЯ 1

- 1. Числовая прямая, числовые множества, числовые промежутки.
- 2. Прямоугольные координаты на плоскости
- 3. Понятие функции одной переменной, основные определения, связанные с понятием функции.
- 4. Основные элементарные функции.

Числовая прямая

• Определение числовой прямой. Прямая, на которой зафиксирована точка О — начало координат, положительное направление и единичный отрезок [0,1], называется координатной или числовой прямой.

Каждому действительному числу a соответствует одна и только одна точка A координатной прямой. Чтобы построить точку A, необходимо отложить отрезок OA, длина которого |OA|=a в положительном направлении, если a>0, или в отрицательном направлении, если a<0. Если числу x на координатной прямой соответствует точка M, то это число называется координатой точки M. Обозначение: M(x). Если M(x), то точку M называют для краткости точкой x.

Прямоугольная (декартова) система координат на

ПЛОСКОСТИ

Плоскость, на которой выбраны две взаимно перпендикулярные координатные прямые с общим началом О и одинаковыми единичными отрезками, называется координатной плоскостью. Точка О называется началом координат. Обычно горизонтальная координатная прямая называется осью абсцисс или *осью х-*ов и обозначается через Ox и вертикальная – осью ординат или осью у-ов и обозначается через Oy. Координатную плоскость с осями Ох и Оу будем обозначать через Оху.

Прямоугольные координаты на плоскости

•Пусть M — произвольная точка координатной плоскости, $M_1(x_M)$ - проекция точки M на ось Ox и $M_2(y_M)$ - проекция точки M на ось Oy (в скобках записаны координаты точек M_1 и M_2 на осях Ox и Oy, соответственно).

Упорядоченная пара чисел (x_M, y_M) называется *прямоугольными координатами точки М*. То, что точка M имеет координаты (x_M, y_M) , записывается так: $M(x_M, y_M)$.

Построение точки на координатной плоскости

Наоборот, каждой упорядоченной паре чисел (x_0,y_0) можно сопоставить единственную точку M с координатами $x_M=x_0$ и $y_M=y_0$. Таким образом, установлено взаимно однозначное соответствие между всеми упорядоченными парами действительных чисел и точками координатной плоскости.

Расстояние между двумя точками на координатной плоскости

• Пусть $A(x_A, y_A)$ и $B(x_B, y_B)$ - две данные точки на координатной плоскости, тогда расстояние между ними определяется по формуле:

$$|AB| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

В частности,

$$|OA| = \sqrt{x_A^2 + y_A^2}.$$

ОБОЗНАЧЕНИЯ ДЛЯ ЧИСЛОВЫХ МНОЖЕСТВ

№ – множество натуральных чисел:

$$N = \{0,1,2,3,...\}$$

Z — множество целых чисел:

$$Z = \{..., -2, -1, 0, 1, 2, ...\}$$

Q – множество рациональных чисел:

$$Q = \{m/n : m \in \mathbb{Z}, n \in \mathbb{N}, n \neq 0\}$$

R – множество действительных чисел

$$N \subset Z \subset Q \subset R$$

ОБОЗНАЧЕНИЯ ДЛЯ ЧИСЛОВЫХ ПРОМЕЖУТКОВ

Вид промежутка	Геометрическое изображение	Обозначение	Запись с помощью неравенства
Интервал	-	(a,b)	a < x < b
Отрезок		[a,b]	$a \le x \le b$
Полуинтервал		(a,b]	$a < x \le b$
Полуинтервал		[<i>a</i> , <i>b</i>)	$a \le x < b$
Луч или полупрямая		[<i>a</i> ,+∞)	$a \le x$
Луч или полупрямая		$(-\infty, a]$	$x \le a$
Открытый луч		(<i>a</i> ,+∞)	x > a
Открытый луч		$(-\infty,a)$	x < a
ε -окрестность точки b		$(b-\varepsilon,b+\varepsilon)$	$ x-b <\varepsilon$

Определение модуля числа

• Модулем или абсолютной величиной действительного числа a называется само число a, если $a \ge 0$, и противоположное ему число -a, если a < 0. Обозначение: |a|. Итак,

$$|a| =$$
 $\begin{cases} a, \text{если } a \ge 0 \\ -a, \text{если } a < 0 \end{cases}$

Примеры.
$$|0| = 0$$
; $|\sqrt{2}| = \sqrt{2}$; $|\pi - 3| = \pi - 3$; $|-0.7| = 0.7$

Свойства модулей

Для любых действительных чисел $a, b \in R$:

1.
$$|a| \ge 0$$

2.
$$|a| = |-a|$$

3.
$$|a \cdot b| = |a| \cdot |b|$$

$$4. \quad \left| \frac{a}{b} \right| = \frac{|a|}{|b|}$$
, где $b \neq 0$

5.
$$|a|^2 = |a^2|$$

Формула расстояния между двумя точками на числовой прямой

• Если A(a) и B(b), то расстояние AB между точками A и B равно |b-a|. Обозначение:

$$|AB| = |b - a|.$$

Понятие функции одной переменной

Пусть даны два непустых множества *X* и *Y*. Если каждому элементу $x \in X$ сопоставлен по определенному правилу один и только один элемент $y \in Y$, то говорят, что на множестве X задана функция f с множеством значений Y. Обычно функцию обозначают так: y = f(x) или y = y(x). При этом xназывается независимой переменной или аргументом, а переменную у - функцией. Множество Х называется областью определения и обозначается D(f) или D(y), а множество Y называется множеством значений функции и обозначается E(f)или E(y) . Значение функции y = f(x) при x = aобозначается через f(a).

Свойства функций

Графиком функции y = f(x) называется множество точек координатной плоскости Oxy с координатами (x, f(x)) для всех $x \in D(f)$.

Функция y = f(x), область определения которой, как числовой промежуток, симметрична относительно начала координат, называется *четной*, если f(-x) = f(x) для всех $x \in D(f)$, и называется *нечетной*, если f(-x) = -f(x) для всех $x \in D(f)$. График четной функции симметричен относительно оси Oy, график нечетной функции симметричен относительно начала координат.

Функция y = f(x) называется *периодической*, если существует такое число T > 0, что f(x + T) = f(x) для всех $x \in D(f)$. Наименьшее $\tau > 0$, обладающее указанным свойством, называется *периодом* данной функции.

Монотонные функции

Числовые промежутки, на которых функция сохраняет свой знак (т.е. остается только положительной или только отрицательной), называются *промежутками знакопостоянства* функции. Значения аргумента $x \in D(f)$, при которых f(x) = 0, называются *корнями* или *нулями функции*. Корни функции – это абсциссы точек пересечения графика функции с осью Ox.

Функция y = f(x) называется возрастающей на данном числовом промежутке, если

$$x_1 < x_2 \Rightarrow f(x_1) \le f(x_2),$$

и называется убывающей, если

$$x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$$

для всех x_1 и x_2 из этого числового промежутка.

Функция y = f(x) называется монотонной на данном числовом промежутке, если она либо возрастающая, либо убывающая на этом промежутке.

ОСНОВНЫЕ ЭЛЕМЕНТАРНЫЕ ФУНКЦИИ

Степенные функции

• Степенные функции — это функции вида $y = x^a$, где $a \in R$ - фиксированное число.

В зависимости от вида числа a некоторые степенные функции имеют собственные названия. Так при a=1 функция y=x называется линейной*, а ее график представляет собой биссектрису 1-го и 3-го координатных углов; при a=2 функция $y=x^2$ называется $\kappa Badpamuuhoŭ**$, а ее график называется $\kappa Badpamuuhoŭ**$, а ее график называется $\kappa Badpamuuhoŭ**$, а ее график называется $\kappa Badpamuuhoŭ**$

^{*} В общем случае линейная функция задается уравнением y = kx + b

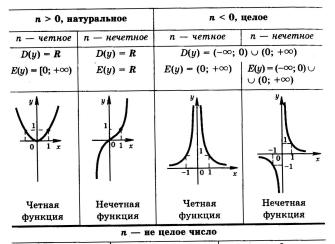
^{**} В общем случае квадратичная функция задается уравнением $y = ax^2 + bx + c$

Степенные функции

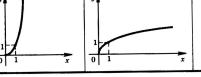
• При a = -1 функция $y = x^{-1} = 1/x$ называется обратной пропорциональностью, а ее график называется гиперболой; при a = 1/2 получаем функцию $y = x^{1/2} = \sqrt{x}$, графиком которой является парабола, симметричная относительно оси Ox; при a = 1/3 получаем функцию $y = x^{1/3} = \sqrt[3]{x}$, графиком которой является кубическая парабола, симметричная относительно оси Ox.

В общем случае область определения степенной функции — множество положительных чисел, но для значений показателя степени $a \in N$ - область определения — множество R, причем для четных a степенная функция четная, а для нечетных a — нечетная.

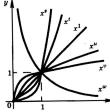
Графики степенных функций



n > 1 0 < n < 1 n < 0 $D(y) = [0; +\infty) = E(y)$ $D(y) = (0; +\infty) = E(y)$



Сравнение графиков степенных функций



Тригонометрические функции

Тригонометрические функции –

$$y = sinx, y = cosx, y = tgx, y = ctgx,$$

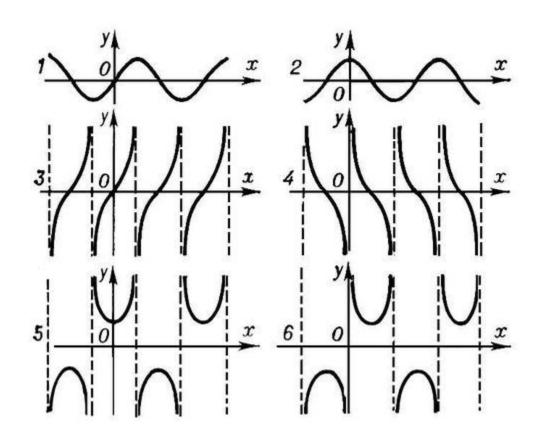
 $y = secx = \frac{1}{cosx}, y = cosecx = \frac{1}{sinx}.$

Все тригонометрические функции являются периодическими, причем период $\tau = 2\pi$ для функций y = sinx, y = cosx, y = secx и y = cosecx, и $\tau = \pi$ для функций y = tgx и y = ctgx. Функция y = cosx является четной, а все остальные являются нечетными.

Область определения функций y = sinx, y = cosx — множество R; функции y = tgx — множество

$$R - \{\pi/2 + \pi k : k \in Z\}$$
; функции $y = ctgx$ – множество $R - \{\pi k : k \in Z\}$

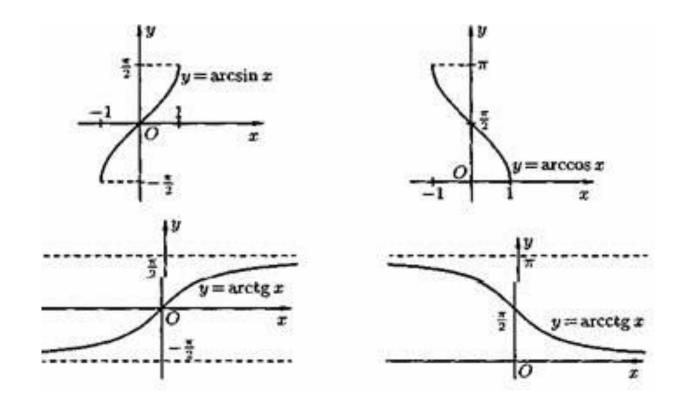
Графики тригонометрических функций



Обратные тригонометрические функции

Обратные тригонометрические функции – y = arcsinx, y = arccosx, y = arctgx и y = arcctgx. Область определения функций y = arcsinx, y =arccosx - отрезок [-1;1], а множество значений – отрезок $[-\pi/2; \pi/2]$, функция $y = \arcsin x$ - нечетная и возрастающая, а y = arccosx - убывающая, причем она не является ни четной, ни нечетной. Функции y = arctgx и y = arcctgx определены на всей числовой прямой, y = arctgx - возрастающая и нечетная, а y = arcctgx - убывающая и не является ни четной, ни нечетной. Множество значений функции y = arctgx - интервал $(-\pi/2; \pi/2)$, а функции y = arcctgx - интервал (0; π).

Графики обратных тригонометрических функций



Показательные функции

Показательные функции – функции вида $y = a^{x}$, где a > 0, $a \ne 1$. Областью определения показательной функции является множество *R* всех действительных чисел, а множеством значений – множество R^+ всех положительных действительных чисел. Если a>1, то функция $y = a^x$ является возрастающей на всей числовой прямой, если 0 < a < 1, то функция $y = a^x$ является убывающей. Функция $y=e^{x}$ называется экспонентой, для экспоненты часто используется следующее обозначение: $y = \exp(x)$.

Графики показательных функций

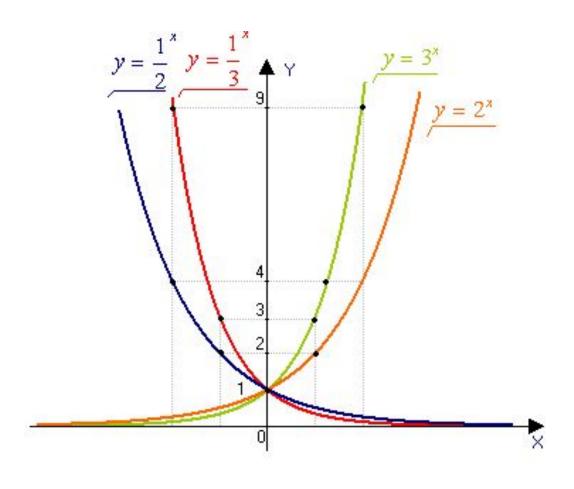
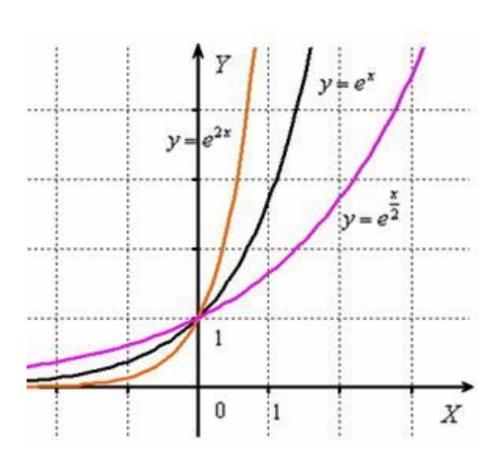


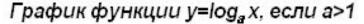
График экспоненты



Логарифмические функции

Логарифмические функции - $y = \log_a x$, где a>0, $a\neq 1$. Областью определения логарифмической функции является множество всех положительных действительных чисел R^+ , а множеством значений – множество всех действительных чисел. Если a>1, то функция $y = \log_a x$ является возрастающей на R^+ , если 0 < a < 1, то функция $y = \log_a x$ является убывающей. Если a=10, то функция $y = \log_{10} x = \lg x$ называется десятичным логарифмом, если a=e, то функция $y=\log_e x=\ln x$ называется натуральным логарифмом.

График логарифмической функции



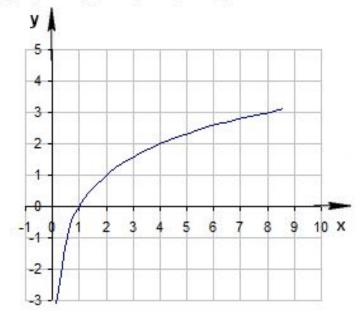


График функции y=log_ax, если 0<a<1

