

Применение технологий информационного моделирования в службе ПТО

Применение технологий информационного моделирования в службе ПТО

Основные понятия, подходы и методы

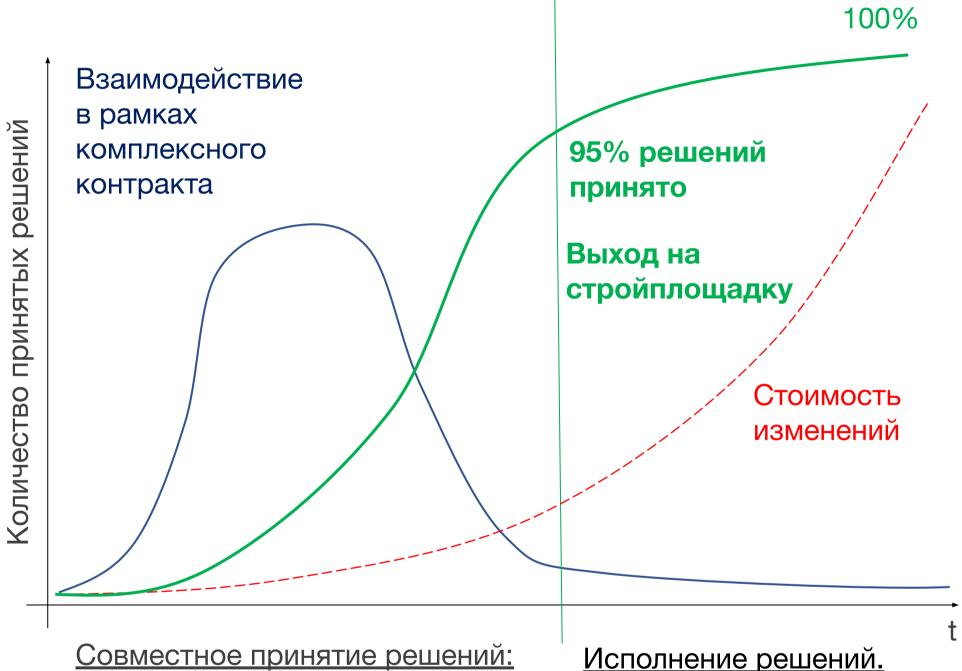
ИМ – новый инженерный подход

Междисциплинарный подход к управлению информацией, определяющий полный набор методологических подходов, технических и управленческих усилий, обеспечивающих эффективное использование информации жизненного цикла создаваемых систем.

Информационное моделирование - интегрирующая методология управления информацией, основанная на системном подходе

3

Участники инвестиционно-строительного проекта


Источник: НИУ МГСУ НОЦ «Умный город»

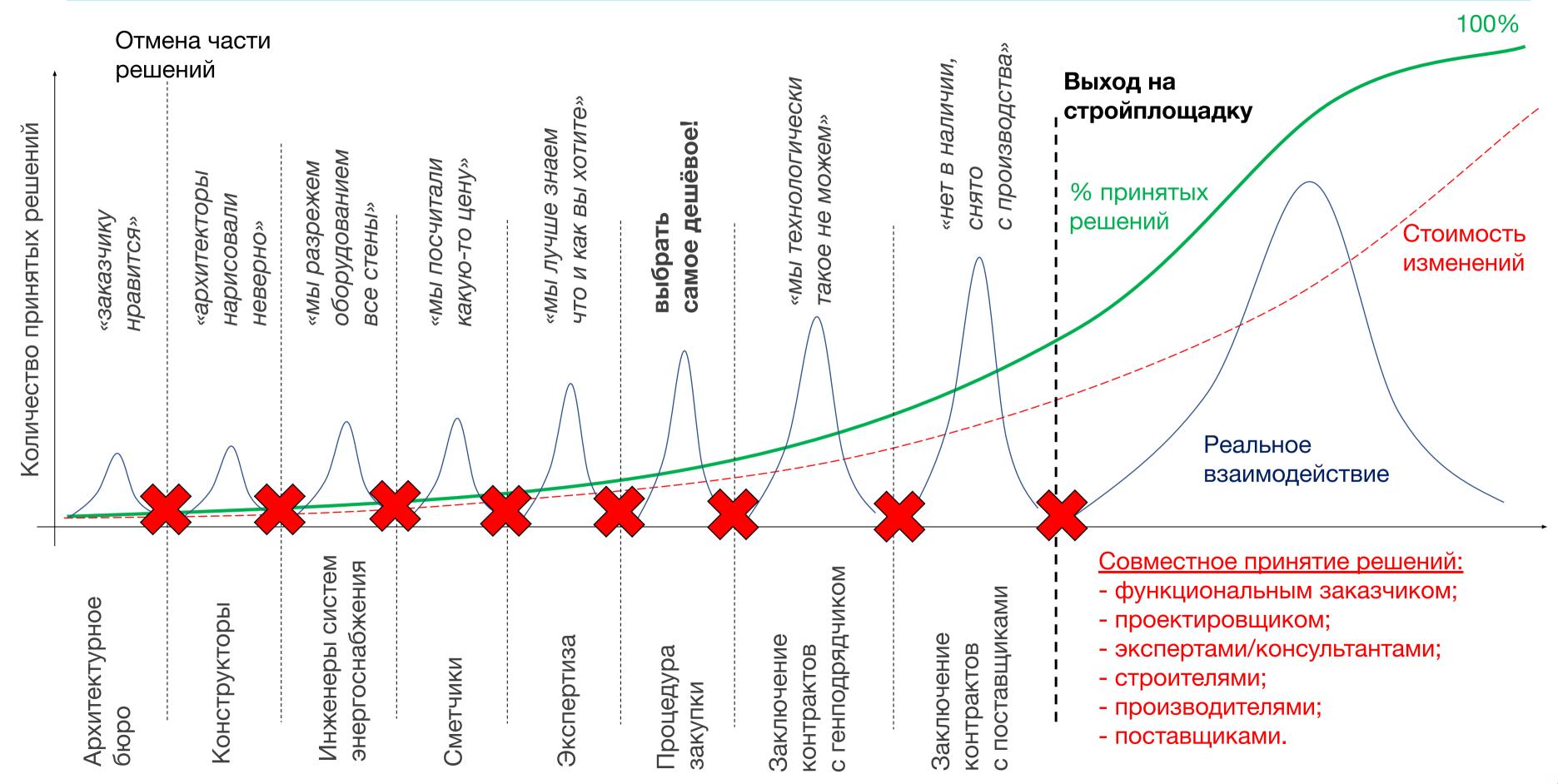
Сценарии применения технологии. Комплексные проекты - IPD

- функциональным заказчиком;
- проектировщиком;
- экспертами/консультантами;
- строителями
- производителями
- поставщиками, с учётом цен, сроков, технологий, иных условий

Integrated Project Delivery, сокр. IPD (на русский язык приблизительно переводится как реализация комплексных строительных проектов) – подход к реализации инвестиционных строительных проектов в капитальном строительстве, при котором возможности и интересы всех участников инвестиционного цикла складываются в единый процесс, направленный на снижение затрат и повышение эффективности на всех стадиях планирования, проектирования и строительства.

От самой ранней, предпроектной стадии, до сдачи объекта в эксплуатацию происходит тесное взаимодействие между заказчиком строительства, генеральным проектировщиком и генеральным подрядчиком, который участвует в инвестиционном проекте в рамках комплексного строительного контракта/проекта.

Принципы реализации комплексного строительного проекта фиксируются в особых договорных отношениях между всеми участниками строительства.


Функциональный заказчик несёт финансовую ответственность за результат по проекту. Это даёт ему право принимать решения с помощью проектного офиса.

Сценарии применения технологии. Текущая ситуация - 44/223-Ф3

Системная инженерия

междисциплинарный подход, определяющий полный набор технических и управленческих усилий, которые требуются для того, чтобы преобразовать совокупность потребностей и ожиданий заказчика и имеющихся ограничений в эффективные решения и поддержать эти решения в течение их жизненного цикла (ISO 24765)

- помогает создателям систем в выделении точек зрения, которые следует использовать системному инженеру, когда он смотрит на мир,
- определяет сферу деятельности (ответственности) системного инженера,
- предлагает инструментарий (процессы) для осуществления этой деятельности.

Источник: ISO/IEC/IEEE 24765:2017 «Systems and software engineering — Vocabulary»

CUCTEMA

целостное упорядоченное множество стабильно связанных и устойчиво взаимодействующих в пространстве и во времени элементов, формирующих ее некоторые интегративные свойства и функционирующих совместно для достижения определённой цели, стоящей перед данной системой.

Имеет:

- Структуру;
- Функцию;
- Свойства существенные признаки объекта;
- Состояние

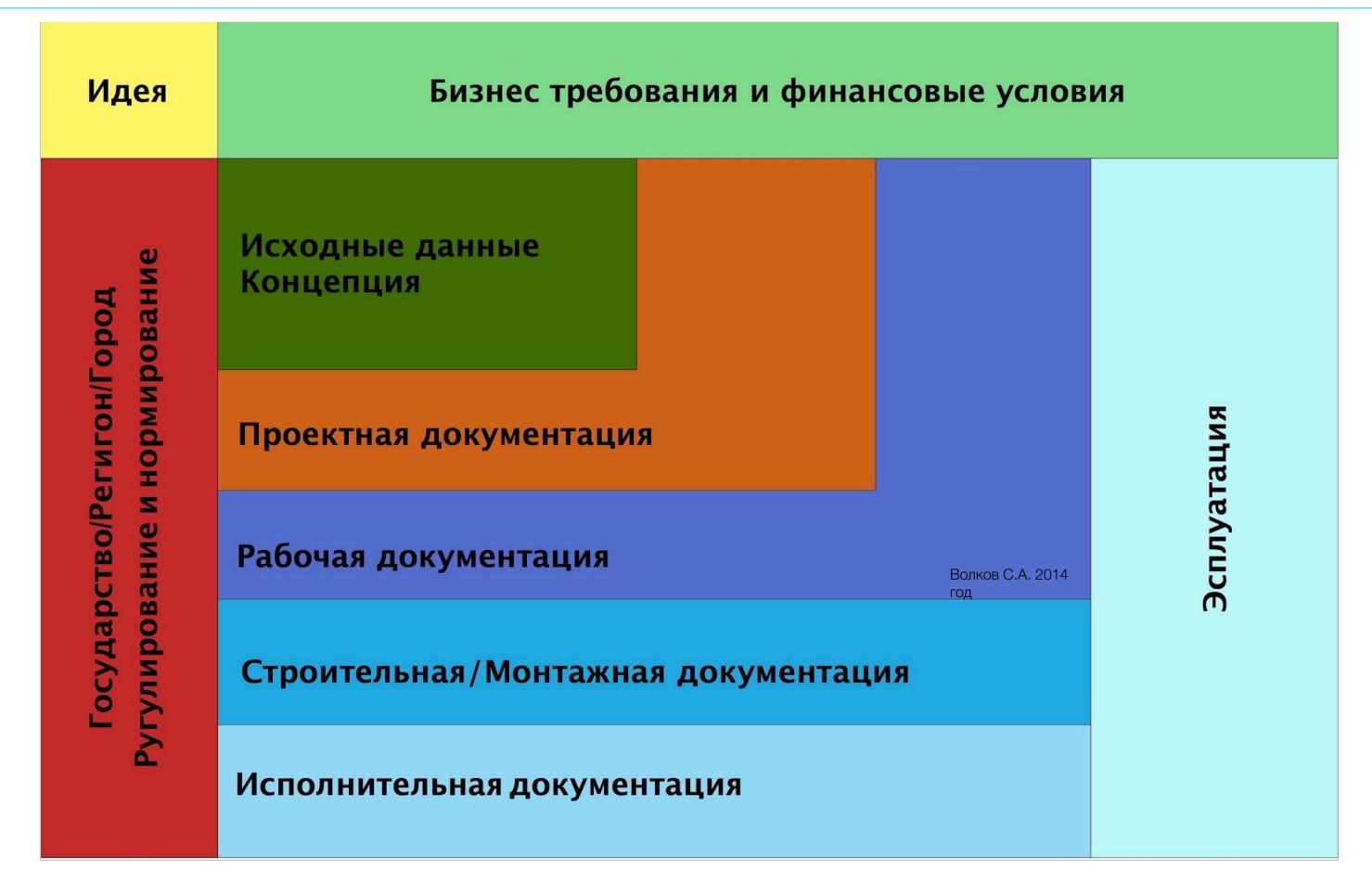
Источник: АСАНОВ А. З. Технология вложения систем и ее приложения: учебное пособие. УФА: УГАТУ, 2007.

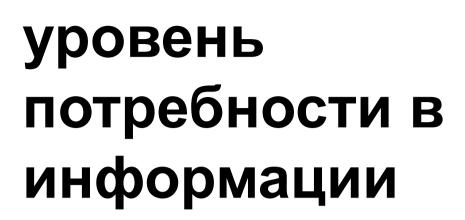
ИНФОРМАЦИЯ

Сведения, воспринимаемые человеком и (или) специальными устройствами как отражение фактов материального или духовного мира в процессе коммуникации

Информация может быть четырех основных типов:

- двоичная (например, программы в исходных кодах);
- символьная (набор буквенно-цифровых символов: текст, таблицы и т.п.);
- графическая (чертежи, 3D-модели, рисунки, графики, диаграммы и т.д.);
- мультимедийная (аудиозаписи, видеофильмы и т.д.)


Источник: ГОСТ 15971-90 Системы обработки информации. Термины и определения


ПРИНЦИП СОХРАНЕНИЯ ИНФОРМАЦИИ

Уровень графической проработки

Level of detail LOd

Уровень информационного наполнения

Level of information LOi

Уровень потребности в информации

Level of information need LOIN

Уровень сервиса (эксплуатация)

Уровень координации

Level of Coordination

LOc

Level of Service LOs

Level of Accuracy **LOa**

Уровень точности

определяет минимальный объемом информации, необходимой для удовлетворения каждого соответствующего требования проекта

МОДЕЛЬ

Упрощенное представление объекта-системы, описывающее основные характеристики более сложной системы (реального объекта, процесса, явления)

Модели могут быть следующих типов:

- Геометрическими;
- Описательными;
- Математическими;
- Имитационными;
- о Идр.

Источник: ГОСТ Р 57269 - 2016 Интегрированный подход к управлению информацией жизненного цикла антропогенных объектов и сред. Термины и определения

ОБЩЕЕ ПРЕДСТАВЛЕНИЕ

Комплексное стандартизированное цифровое представление свойств, параметров и связей антропогенного объекта в виде информационных наборов и содержащее информацию (текстовую, графическую, расчетную и вычислимую) о материальных и не материальных элементах антропогенного объекта.

ИНФОРМАЦИОННАЯ МОДЕЛЬ

Информационная модель может содержать:

- Геометрические пространственные 2D и 3D модели;
- математические модели;
- процессные модели;
- модели хранения и управления данными;
- модели обмена данными;
- правила трансформации (преобразования) модели;
- пространственно-временные модели (4D);
- стоимостные модели;
- м др..

Источник: ГОСТ Р 57269 – 2016 «Интегрированный подход к управлению информацией жизненного цикла антропогенных объектов и сред. Термины и определения»

По ГРАДКОДЕКСУ

совокупность взаимосвязанных сведений, документов и материалов об объекте капитального строительства, формируемых в электронном виде на этапах выполнения инженерных изысканий, осуществления архитектурностроительного проектирования, строительства, реконструкции, капитального ремонта, эксплуатации и (или) сноса объекта капитального строительства

ИНФОРМАЦИОННАЯ МОДЕЛЬ ОБЪЕКТА КАПИТЕЛЬНОГО СТРОИТЕЛЬСТВА

Информационная модель может содержать:

- Геометрические пространственные 2D и 3D модели;
- математические модели;
- процессные модели;
- модели хранения и управления данными;
- модели обмена данными;
- правила трансформации (преобразования) модели;
- о пространственно-временные модели (4D);
- о стоимостные модели;
- м др..

Источник: ГрК РФ Статья 57.5. Информационная модель объекта капитального строительства

Верхнеуровневая структура информационной модели

Габариты:

высота, ширина, длина

Геопрозиция:

долгота, широта, высота над уровнем земли

Классификация:

Код, Тип изделия, Отношение к системе

Материал:

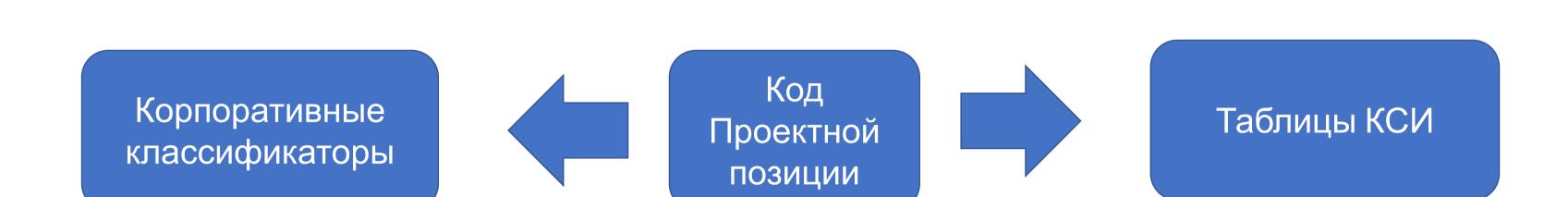
код и тип, характеристики, свойства

3D изображение

Паспорт изделия:

наименование, производитель, контакты, характеристики, правила эксплуатации

Стоимость:


Стоимость изделия, стоимость логистики, стоимость монтажа

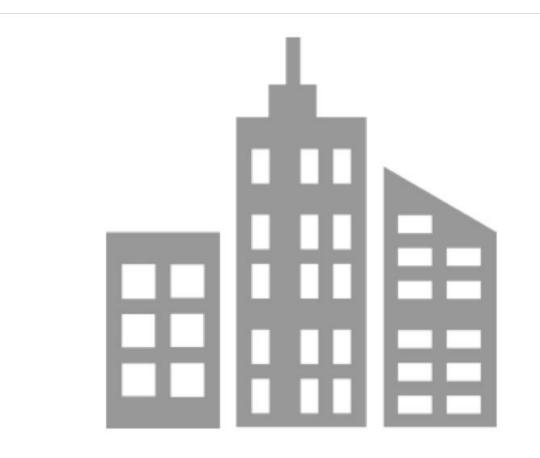
Технология:

монтажа, транспортировки, TOHIP

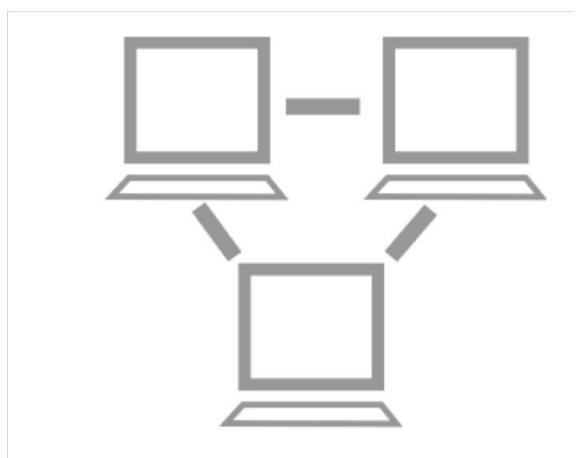
ПРОЕКТНАЯ ПОЗИЦИЯ

элемент информационной модели отображающий единицу здания, сооружения, оборудования, материала, сигнала, алгоритма и их частей, имеющий уникальный код, используемый на всех этапах жизненного цикла объекта

КОД ПРОЕКТНОЙ ПОЗИЦИИ НЕ ИЗМЕНЯЕТСЯ НА ПРОТЯЖЕНИИ ВСЕГО ЖИЗНЕННОГО ЦИКЛА



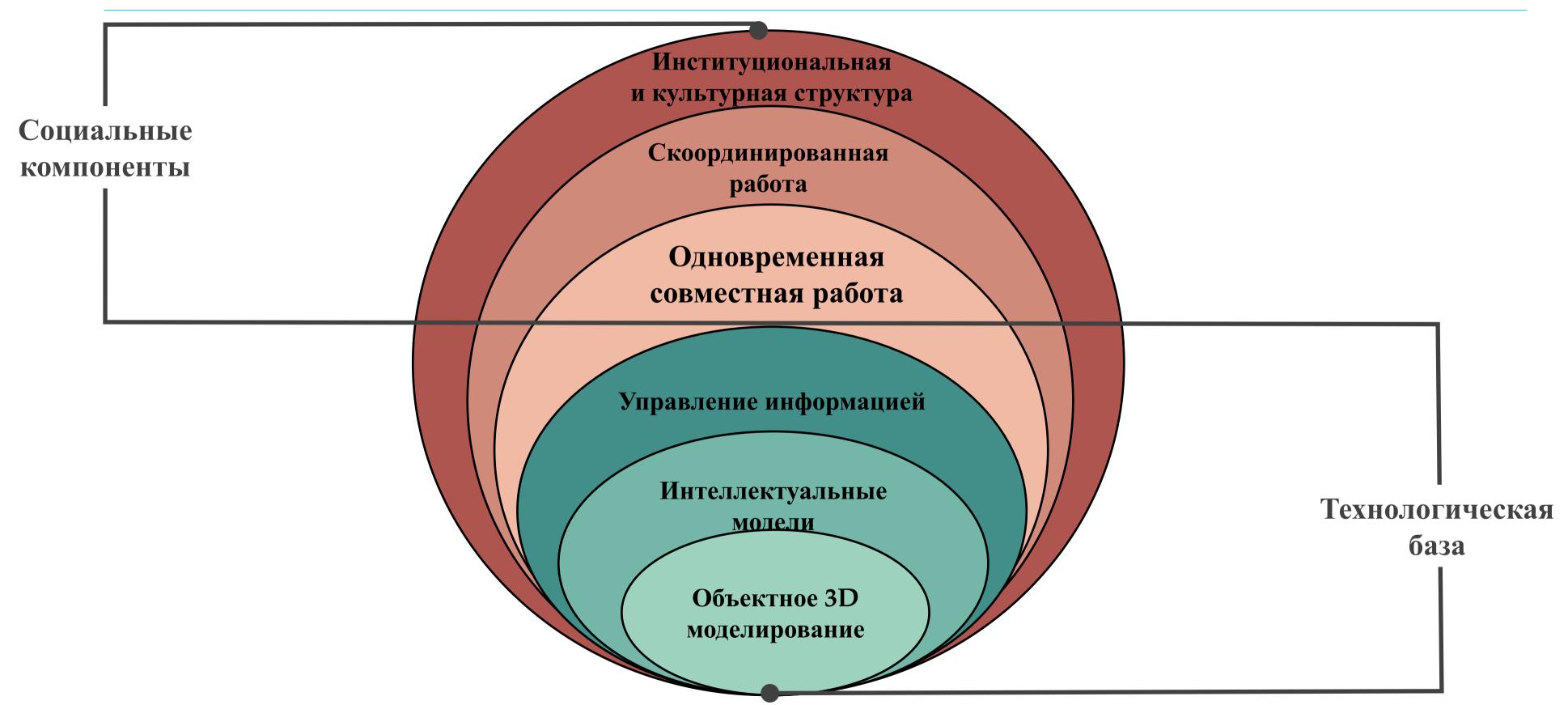
Информационное моделирование здания


ОДНА АББРЕВИАТУРА, но РАЗНЫЙ СМЫСЛ

Building Information Modeling информационное моделирование здания

Building Information Model информационная модель объекта

Building Information Management управление информацией о здании


7

ТИМ: элементы успешного процесса

Информационная модель - социотехническая система

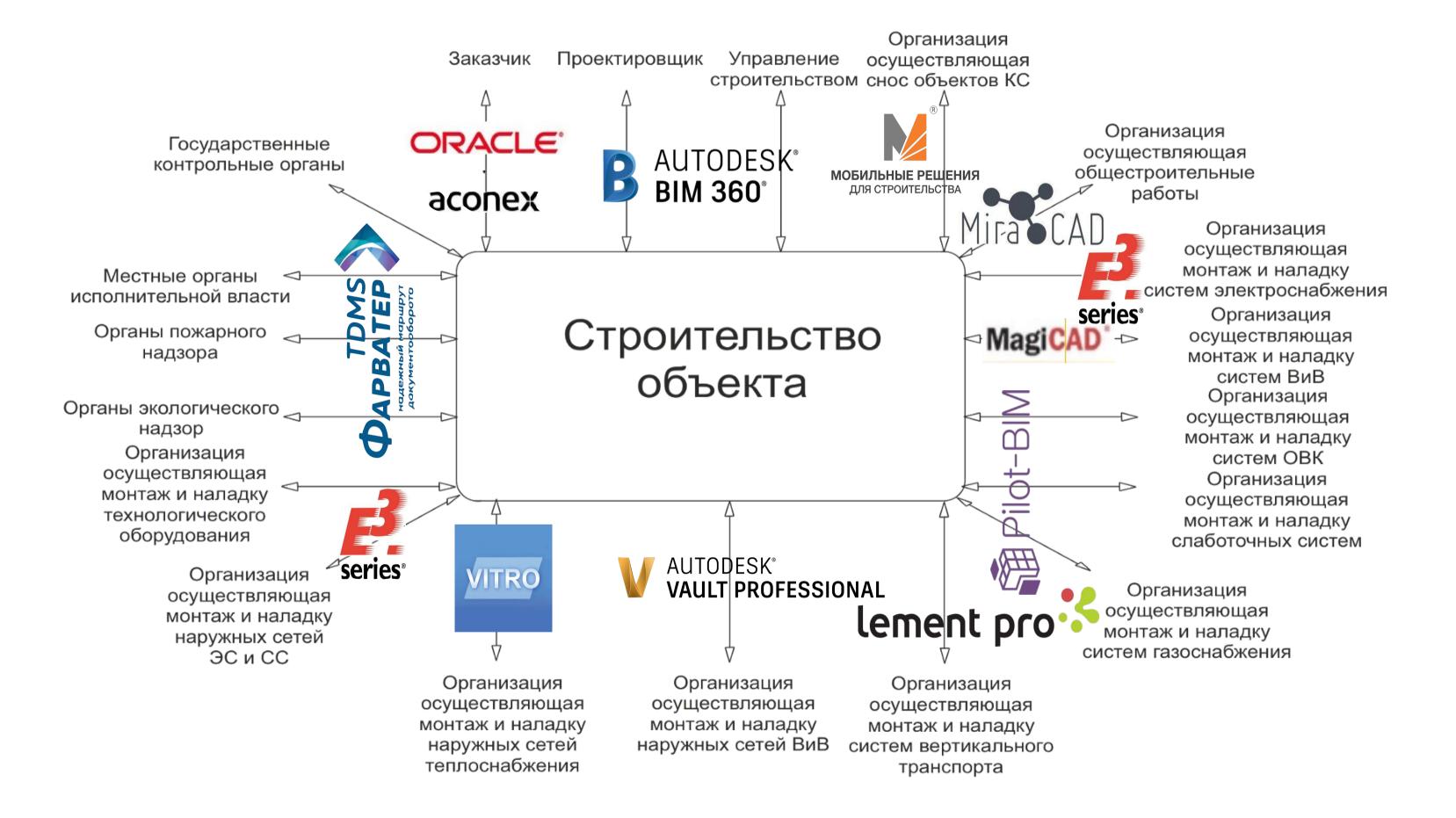
ЕИП -Генерального проектировщика

ЕИП -Субподрядной организации

Участн ики проекта без ЕИП

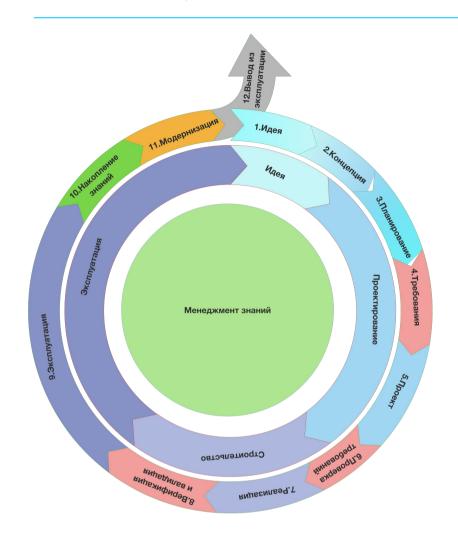
ЕИП -Генерального подрядчика

ЕИП -Субподрядной организации


- Облачный программно-аппаратный комплекс для обеспечения взаимодействия участников проекта
- Хранение данных и информационных моделей с учетом требований ИБ
- Управление доступом к сводной информационной модели
- Контроль качества моделей
- Интегрированная аналитика и отчетность по проекту

ЕИП - Государственных контрольно-надзорных органов

Требования к информационному обмену в программной среде


18

Определение

Конечное множество родовых фаз и шагов, которые система может проходить на протяжении полной истории её жизни.

Жизненный цикл объекта

Жизненны цикл включает:

 Руководство, стратегии и процедуры, предназначенные для разработки системы на протяжении всего её жизненного цикла, определение требований, проектирование, реализацию, проведение испытаний, развертывание, функционирование и техническое обслуживание.

Источник: ГОСТ Р 57269 – 2016 «Интегрированный подход к управлению информацией жизненного цикла антропогенных объектов и сред. Основные положения

Жизненный цикл объекта

Департамент строительства города Москвы

Содержание и уровни проработки цифровых информационных моделей

Типы и уровни проработки ЦИМ	Содержание ЦИМ			
Модель инженерных изысканий (А)	Цифровая модель местности, содержащая результаты изысканий: геодезических, геологических, гидрометеорологических, экологических, геотехнических, археологических и др.			
Проектная модель (ПД) (В)	Сводная цифровая модель проекта: исходно-разрешительная документация; требования и ограничения; цифровая модель местности; проработка вариантов проектных решений; модели по основным моделируемым разделам проектирования (АР, КР, ТХ, ОВ, ВК, ТМ, ЭОМ и т.д.); цифровой ПОС. Экспертиза проектной документации в форме информационной модели.			
Проектная модель (РД) (B+C1)	Сводная цифровая модель проекта: исходно-разрешительная документация; требования и ограничения; цифровая модель местности; оптимизация проектных решений; детализированные модели по всем моделируемым разделам проектирования (АР, КР, КМ, КМД, КЖ, ТХ, ОВ, ВК, ТМ, ЭОМ и т.д.), цифровой ПОС.			
Строительная модель (С1)	Проектная модель (РД) и ресурсно-технологическая модель, данные по законтрактованным и поставленным материалам, цифровой ППР и моделирование сложных монтажных работ, вариантное проектирование последовательности СМР, выдача наряд-заданий и приемка работ, моделирование фактического исполнения и сравнение с проектными решениями, модель проведения испытаний (ПНР)			
Исполнительная модель (C2)	Информационная модель по фактическому исполнению проектных решений, исполнительная документация, полный комплект исторической документации по проекту, результаты испытаний, паспорта оборудования, инструкции по ремонту и эксплуатации, каталоги запасных частей и т.д.			
Эксплуатационная модель (D)	Сводная цифровая модель, обеспечивающая выполнение работ по эксплуатации: данные и документация об инженерных сетях и технологическом оборудовании (паспорта, разрешительная документация и т.д.); история ремонтов и замен оборудования; технические и технологические показатели работы оборудования в режиме реального времени; моделирование технического обслуживания и ремонтов; моделирование технологических режимов, модернизации производства и ремонтов зданий и инженерных систем.			
Модель сноса и демонтажа (G)	Проектная модель демонтажа и ресурсно-технологическая модель, данные по повторному использованию материалов и утилизации, цифровой ПОД и ППР и моделирование сложных монтажных работ, вариантное проектирование последовательности демонтажных работ, выдача наряд-заданий и приемка работ			

3

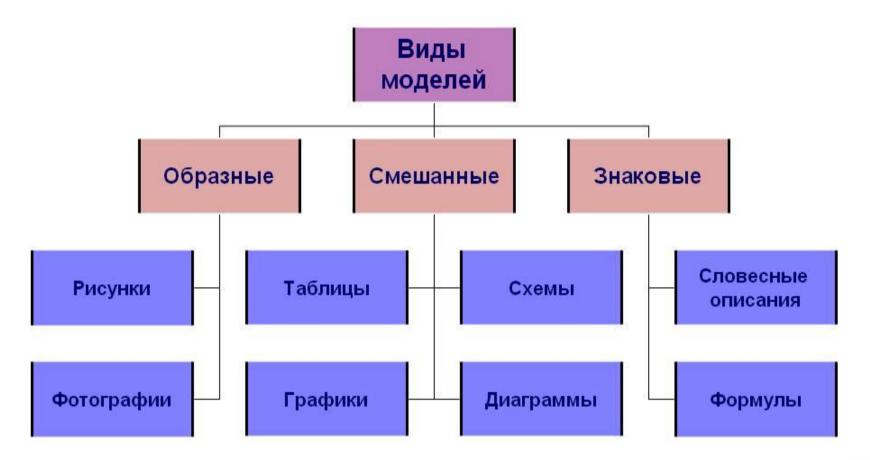
Сценарии разработки информационной модели на жизненном цикле

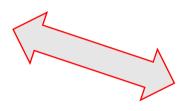
ЖЦ проекта сооружения		<u> </u>				
Предпроектные работы	Проектирование		Строительно-монтажные работы		Эксплуатация	
Цифровые Информационные модели (ЦИМ)						
Концептуальная модель	Проектная модель (ПД)	Проектная модель (РД)	Строительная модель	Исполнительная модель	Эксплуатационная модель	
Модель ин изыс						
Уровни проработки (LOD)			<u> </u>		 	
A	В	B + C1	C1	C2	D	
Владелец модели					1	
		Эксплуатирующая организация				
Разработчик модели			<u> </u>		I	
Сценарий I* Проектная организация	Генеральный проектировщик		Генеральный подрядчик		Эксплуатирующая организация	
Сценарий II** ВІМ-Оператор/Центр компетенций/Организация отвечающая за сопровождение информационной модели						
* Высокая цифровая зре	елость ** Низкая цифро	NOBSE SUBTROCTE				

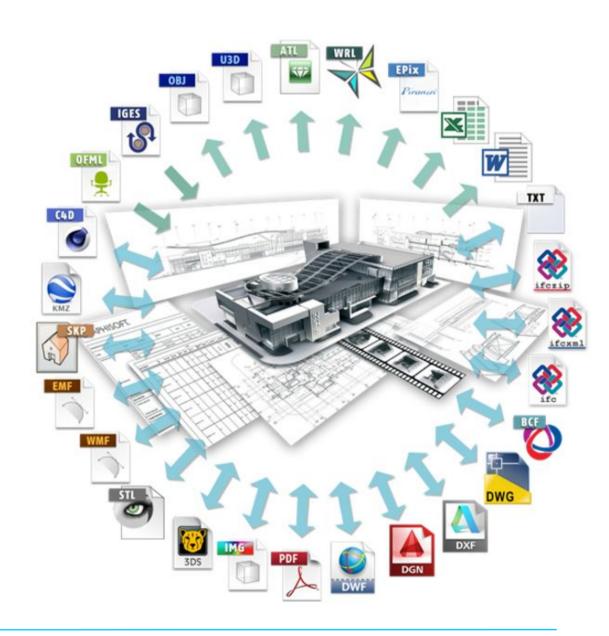
Взаимосвязь ЕСИМ с Цифровыми двойниками

Стандарты на Цифровые двойники Информационное моделирование формирует инфраструктуру для Электронные цифровых двойников модели **ECNM** ЕСКД СПДС Оформление Оформление чертежей чертежей

Стандарты «Компьютерные модели и моделирование»


Разработанные подходы компьютерного моделирования используются в рамках информационного моделирования





Требования к формату передаваемой ЦИМ

Сценарии применения технологии

Design / ОБИН, Проектирование

- Моделирование существующих условий (ECM)
- Планирование процессов стройплощадки (SUP)
- Анализ местонахождения объекта (SA)
- Архитектурное программирование (АР)
- Визуализация (VIZ)
- Имитация создаваемых процессов (SIM)
- Пространственный анализ (SPA)
- Специфицирование (СП)
- Расчёт объёмов (QTO)
- Анализ / оценка затрат (СА)
- Расчёт общей стоимости владения / срока службы (ТСО)
- Разработка дизайна и брифинг (DAB)
- Анализ решений дизайна / макетирование (DR)

- Оценка устойчивости (SE)
- Оценка удобства эксплуатации (D2M)
- Расчёт конструкций (STR)
- Расчёт освещения (LA)
- Энергетический расчёт (EN)
- Расчёт разрушения (МА)
- Имитация энергопотребления (ELA)
- Иной инженерный анализ (ОЕА)
- Анализ взаимодействия систем объекта (BSA)
- 3D-координация (3DC)
- 3D-контроль и планирование (3DP)

Produce / Производство

- Библиотеки актуальных данных (PL)
- Выполнение закупок (РР)

Assemble / Строительство

- Проверка кодирования элементов (CV)
- Проектирование строительных систем (CSD)
- Календарное/фазовое планирование (РР)
- Производство на основе моделей (DF)
- Отслеживание цепочки поставки (FMT)
- Вынос модели на площадку (B2F)
- Контроль согласованности (СС) Quality assurance (QA) / Quality control (QC)
- Контроль требований функционального заказчика (ОА)
- Платежные приложения (Р \$ А)
- Лазерное сканирование (LS)
- Ввод в эксплуатацию (СОМ)

Применение технологий информационного моделирования в службе ПТО

Законодательство: текущее состояние и перспективы

Изменено Федеральным законом от 27.06.2019 N 151-Ф3 (ред. от 13.07.2020) "О внесении изменений в Федеральный закон "Об участии в долевом строительстве многоквартирных домов и иных объектов недвижимости и о внесении изменений в некоторые законодательные акты Российской Федерации" и отдельные законодательные акты Российской Федерации"

Определено:

- Понятие информационной модели объекта капитального строительства;
- Определен статус системы ГИСОГД;
- Введено понятие классификатор строительной информации;
- Область применения классификатора строительной информации

0

• Постановление Правительства Российской Федерации от 15 сентября 2020 г. № 1431 «Об утверждении Правил формирования и ведения информационной модели объекта капитального строительства, состава сведений, документов и материалов, включаемых в информационную модель объекта капитального строительства и представляемых в форме электронных документов, и требований к форматам указанных электронных документов, а также о внесении изменения в пункт 6 Положения о выполнении инженерных изысканий для подготовки проектной документации, строительства, реконструкции объектов капитального строительства»

Определено:

- Правила формирования информационной модели объекта капитального строительства;
- Порядок ведения информационной модели объекта капитального строительства;
- о Форматы представления информационной модели;
- ответственных лиц за ведение информационной модели;

1 <<<

 Постановление Правительства Российской Федерации от 05 марта 2021 г. № 331 "Об установлении случая, при котором застройщиком, техническим заказчиком, обеспечивающим или осуществляющим подготовку обоснования инвестиций, и (или) лицом, за эксплуатацию объекта капитального строительства, обеспечиваются ответственным формирование и ведение информационной модели объекта капитального строительства"

Определена дата 01 января 2022 года в качестве начала обязательного применения технологии информационного моделирования

Определено:

Определены объекты, для которых применение технологий информационного моделирования будет обязательным.

В целях реализации ПП РФ №331 создана рабочая группа и подготовлен План мероприятий («Дорожная карта») реализации ПП РФ №331.

о Приказ Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 04.08.2020 № 421/пр «Об утверждении Методики определения сметной стоимости объектов строительства, реконструкции, капитального ремонта, сноса капитального строительства, работ по сохранению культурного наследия (памятников истории и культуры) народ в Российской Федерации на территории Российской Федерации» (Зарегистрирован приказом Минюста от 23.09.2020 № 59986)

Предоставлена возможность относить расходы на применение ТИМ в 9 и 12 главы ССР

Определено:

Определены статьи расходов на ТИМ в сводном сметном расчете

о Приказ Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 24.12.2020 № 854/пр «Об утверждении Методики определения стоимости работ по подготовке проектной документации, содержащей материалы в форме информационной модели» (Зарегистрирован в Минюсте 25.02.2021 № 62609)

Введены повышающие коэффициенты при разработке проектной документации в форме информационной модели

Определено:

Методика расчета стоимости проектных работы с применением информационного моделирования;

Нормативная техническая база: Национальные стандарты

- ГОСТ Р 57309-2016 (ИСО 16354:2013) «Руководящие принципы по библиотекам знаний и библиотекам объектов»
- о ГОСТ Р 57311-2016 «Моделирование информационное в строительстве. Требования к эксплуатационной документации объектов завершенного строительства»
- о ГОСТ Р ИСО 22263-2017 «Модель организационных данных о строительных работах. Структура управления проектной информацией»
- о ГОСТ Р 57563-2017/ISO/TS 12911:2012 «Моделирование информационное в строительстве. Основные положения по разработке стандартов информационного моделирования зданий и сооружений» (с Поправкой)
- ГОСТ Р 10.0.02-2019/ИСО 16739-1:2018 «Система стандартов информационного моделирования зданий и сооружений. Отраслевые базовые классы (IFC) для обмена и управления данными об объектах строительства. Часть 1. Схема данных»
- о ГОСТ Р 10.0.03-2019/ИСО 29481-1:2016 «Система стандартов информационного моделирования зданий и сооружений. Информационное моделирование в строительстве. Справочник по обмену информацией. Часть 1. Методология и формат»
- ГОСТ Р 10.0.04-2019/ИСО 29481-2:2012 «Система стандартов информационного моделирования зданий и сооружений. Информационное моделирование в строительстве. Справочник по обмену информацией. Часть 2. Структура взаимодействия»

Нормативная техническая база: Национальные стандарты

- ГОСТ Р 10.0.05-2019/ИСО 12006-2:2015 «Система стандартов информационного моделирования зданий и сооружений. Строительство зданий. Структура информации об объектах строительства. Часть 2. Основные принципы классификации»
- ГОСТ Р 10.0.06-2019/ИСО 12006-3:2007 «Система стандартов информационного моделирования зданий и сооружений. Строительство зданий. Структура информации об объектах строительства. Часть 3. Основы обмена объектно-ориентированной информацией»
- ГОСТ Р 58438.1-2019 «Структуры данных электронных каталогов продукции для инженерных систем зданий. Часть 1. Понятия, архитектура и модель»
- ГОСТ Р 58438.2-2020 «Структура данных электронных каталогов продукции для инженерных систем зданий. Часть 2. Геометрия»
- ГОСТ Р 58907-2020 «Строительство. Планирование срока службы объектов строительства. Часть 4.
 Планирование срока службы с использованием информационного моделирования»
- ГОСТ Р 58908.1-2020/МЭК 81346-1:2009 «Промышленные системы, установки, оборудование и промышленная продукция. Принципы структурирования и коды. Часть 1. Основные правила»
- ГОСТ Р 58908.12-2020 (ИСО 81346-12:2018) «Промышленные системы, установки, оборудование и промышленная продукция. Принципы структурирования и коды. Часть 12. Объекты капитального строительства и системы инженерно-технического обеспечения»

6

Нормативная техническая база: Своды правил

- СП 301.1325800.2017 «Информационное моделирование. Правила организации работ производственно-техническими отделами»
- о СП 328.1325800.2020 «Информационное моделирование в строительстве. Правила описания компонентов информационной модели»
- СП 331.1325800.2017 «Информационное моделирование в строительстве. Правила обмена между информационными моделями объектов и моделями, используемыми в программных комплексах»
- о СП 333.1325800.2020 «Информационное моделирование в строительстве. Правила формирования информационной модели объектов на различных стадиях жизненного цикла»
- СП 404.1325800.2018 «Информационное моделирование в строительстве. Правила разработки планов проектов, реализуемых с применением технологии информационного моделирования»
- СП 471.1325800.2019 «Информационное моделирование в строительстве. Контроль качества производства строительных работ»
- СП 480.1325800.2020 «Информационное моделирование в строительстве. Требования к формированию информационных моделей объектов капитального строительства для эксплуатации многоквартирных домов, реализованных по проектам повторного использования»
- СП 481.1325800.2020 «Информационное моделирование в строительстве. Правила применения в экономически эффективной проектной документации повторного использования и при ее привязке»

Нормативная техническая база: зарубежные стандарты

- ISO 12006-2:2015 Строительство Организация информации о строительстных работах Часть2:
 Основа классификации
- ISO 12006-3:2007 Строительство Организация информации о строительных работах Часть 3:
 Основа для объектно-ориентированной информации
- ISO 22263:2008 Организация информации о строительных работах Основа для управления проектной информацией
- ISO 19650-1:2018 Организация и цифровизация информации об объектах капитального строительства и строительных работах, включая информационное моделирование в строительстве (ВІМ) - Информационный менеджмент с использованием технологий информационного моделирования - Часть 1. Концепции и принципы
- ISO 19650-2:2018 Организация и цифровизация информации об объектах капитального строительства и строительных работах, включая информационное моделирование в строительстве (ВІМ) - Информационный менеджмент с использованием технологий информационного моделирования - Часть 2. Стадия строительства объектов недвижимости

~

Нормативная техническая база: зарубежные стандарты

- ISO 19650-3:2020 Организация и цифровизация информации об объектах капитального строительства и строительных работах, включая информационное моделирование в строительстве (ВІМ) - Информационный менеджмент с использованием технологий информационного моделирования - Часть 3. Стадия эксплуатации и управления активом
- ISO 29481-1:2016 Информационные модели объектов капитального строительства Руководство по доставке информации - Часть 1: Методология и формат
- ISO 29481-2:2012 Информационные модели объектов капитального строительства Руководство по доставке информации - Часть 2: Основы взаимодействия
- ISO 29481-3 Информационное моделирование в строительстве Руководство по доставке информации - Часть 3: Схема данных и классификация
- ISO 23387:2020 Информационное моделирование в строительстве (ВІМ) Шаблоны данных для объектов строительства, используемые на протяжении жизненного цикла актива - Концепции и принципы
- ISO 16354:2013 Руководства по библиотекам знаний и библиотекам объектов

9 <<

Нормативная техническая база: зарубежные стандарты

- ISO 16739-1:2018 Отраслевые базовые классы (IFC) для обмена данными в области строительства и эксплуатации недвижимости - Часть 1: Схема данных
- ISO 16757-2:2015 Структуры данных для электронных каталогов продукции инженернотехнического обеспечения зданий - Часть 2: Геометрия
- ISO 21597-1:2020 Информационный контейнер для доставки связанных документов -Спецификация обмена - Часть 1: Контейнер
- ISO 21597-2:2020 Информационный контейнер для доставки связанных документов -Спецификация обмена - Часть 2: Типы связей
- EN 17412-1:2020 Информационное моделирование в строительстве Уровень потребности в информации - Часть 1: Концепции и принципы
- EN 17412-3:2020 Информационное моделирование в строительстве Уровень потребности в информации - Часть 3: Схема данных
- EN 17473 Информационное моделирование в строительстве (ВІМ). Шаблоны данных для строительных объектов, используемые на протяжении всего жизненного цикла любого построенного актива. Шаблоны данных, основанные на гармонизированных технических спецификациях в соответствии с Положением о строительной продукции (СРК)

40 ((

Применение технологий информационного моделирования в службе ПТО

стандартизация информационного моделирования

Структура системы стандартов ЕСИМ

Структура номера стандартов ЕСИМ ГОСТ Р 10.GG.LDDNF**ФQ**ДР 10.GG.0000-ГОД

номер классификационной группы

Единая система информационного моделирования **ΓΟCT P 10.**

00 группа Основополагающие стандарты (ГОСТ Р 10.00.хххх-ГОД)

01 группа Классификация и идентификация элементов информационных моделей и объектов (ГОСТ Р 10.01.хххх-ГОД)

02 группа Требования к информационному моделированию объектов (ГОСТ Р 10.02.хххх-ГОД)

03 группа Требования к информационному моделированию территорий и акваторий (ГОСТ Р 10.03.хххх-ГОД)

04 группа Требования к единому информационному пространству (ГОСТ P 10.04.хххх-ГОД)

05 группа Требования к оценке качества информационных моделей (ГОСТ P 10.05.хххх-ГОД)

06 группа Требования по применению информационных моделей для обеспечения безопасности объекта (ГОСТ Р 10.06.хххх-ГОД)

ГОСТ Р 10.00. L000-ГОД

номер условной стадий жизненного цикла

L	Условная стадия жизненного цикла проекта
0	Общие стандарты для группы
1	Предпроектные работы
2	Проектирование
3	Строительство
4	Эксплуатация
5	Вывод из эксплуатации
6	зарезервировано
7	зарезервировано
8	зарезервировано
9	зарезервировано

ГОСТ Р 10.00.0DDN – ГОД

номер подгруппы в соответствии классификатором объектов капитального строительства по их назначению и функциональнотехнологическими особенностям

ΓΟCT P 10.00.0DDN -ГОД

N – порядковый номер стандарта в подгруппе классификационной группы

Департамент строительства города Москвы

Блок-схема стандартов ЕСИМ

ГОСТ Р 10.00.0000 «Единая система информационного моделирования. Основные положения»

Код 00 -Основополагающие стандарты

Основные

положения о ЕСИМ,

общие требования,

термины, принципы

цели и задачи

ЕСИМ

идентификация элементов ИМ и объектов

> Правила и методы классификации, именования, идентификации и маркировки

Код 01 -

Классификация и

Код 02 - Требования к информационному моделированию объектов

Общие и отраслевые принципы, правила и требования формирования ИМ объектов

Код 03 -

Требования к информационному моделированию территорий и акваторий

Общие и отраслевые принципы, правила и требования к формированию ИМ территорий и акваторий

Код 04 - Требования к ЕИП

> Принципы, правила, методология и требования к организации ЕИП, информационном у обмену и форматам

Код 05 - Требования к оценке качества ИМ

Требования, методы и правила оценки и проверки качества ИМ, методы приемки результатов информационного моделирования

Код 06 -Требования по применению ИМ для обеспечения безопасности

объекта

Принципы, правила и методы формирования и анализа промышленной безопасности, ТБ и охраны труда, на основе ИМ.

Департамент строительства города Москвы

Градостроительное проектирование

Информационная модель территории

Информационная модель Региона/Города

Информационная модель природных объектов

Информационная модель недр

Инженерная подготовка территории

Информационная модель территории

Информационная модель недр

Информационная модель ОКС

Проектирование

Информационная модель территории

Информационная модель ОКС

Информационная модель линейного объекта

Информа ционная модель изделия

Информационная модель инженерных изысканий

Строительство

Информационная модель благоустройства

Строительная информационная модель

Исполнительная информационная модель

Цифровой ПОС и ППР

Эксплуатация

Информационная модель территории

Эксплуатационная информационная модель ОКС

Эксплуатационная информационная модель линейного объекта

Эксплуата ционная информац ионная модель изделия

Снос и демонтаж

Информационная модель рекультивации

Информационная модель демонтажа

Информационная модель сноса

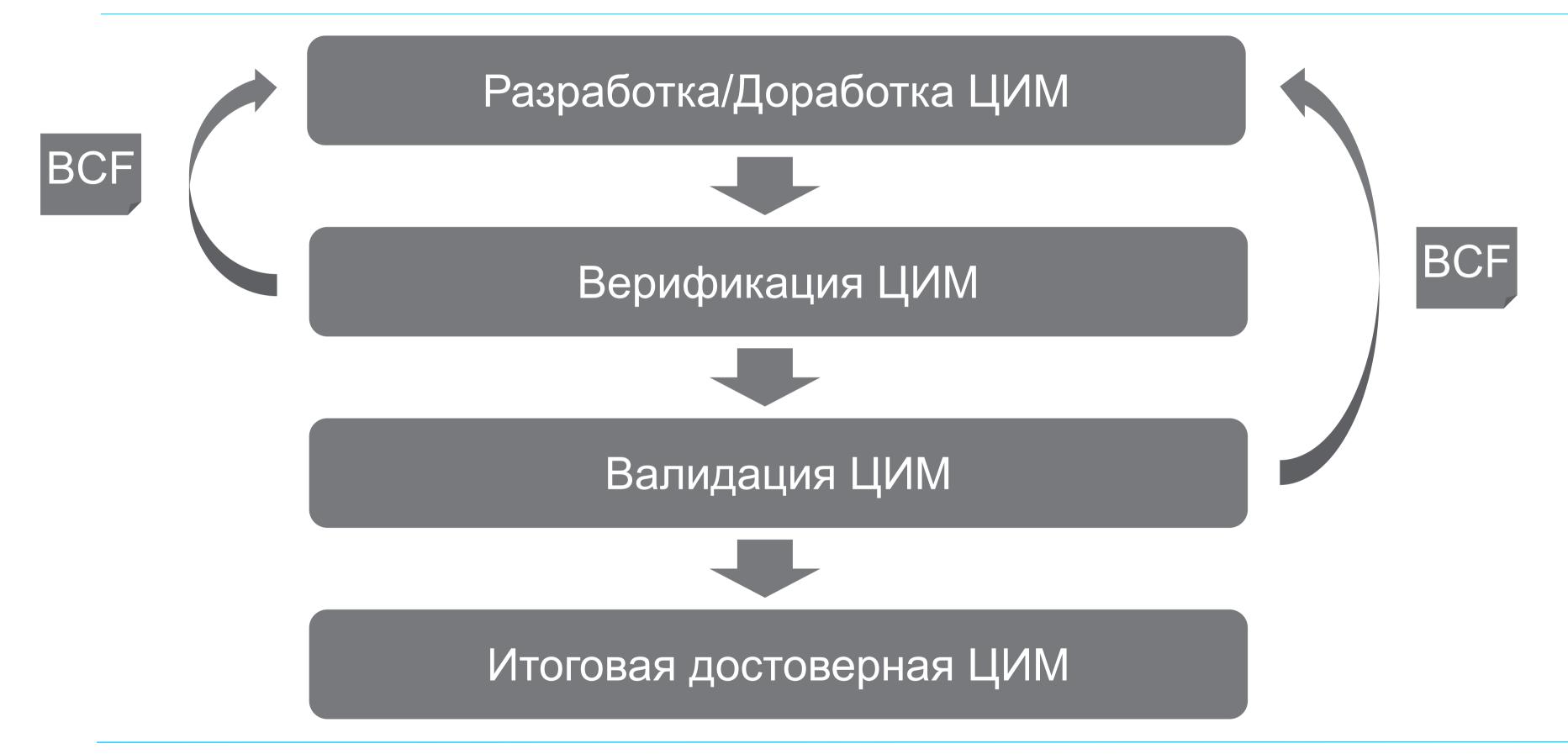
Цифровой ПОД и ППР

ЕСИМ: Уровни зрелости

А Очень высокая степень эффективности и оптимальности	A. 0	A.1	A.2	A.3	A.4	1
Высокая степень эффективности и оптимальности	B.0	B.1	B.2	В.3	B.4	
С Повышенная степень эффективности и оптимальности	C.0	C.1	C.2	C.3	C.4	2
D Нормальная степень эффективности и оптимальности	D.0	D.1	D.2	D.3	D.4	3
Е Пониженная степень эффективности и оптимальности	E.0	E.1	E.2	E.3	E.4	
F Низкая степень эффективности и оптимальности	F.0	F.1	F.2	F.3	F.4	
G Очень низкая степень эффективности и оптимальности	G.0	G.1	G.2	G.3	G.4	
Интегрированный подход Модель зрелости Информационная модель Версия 1.0.2016	Уровень 0 Не интегрируемая среда	Уровень 1 Управляемая объектно- ориентированная среда	Уровень 2 Управляемая моделе- ориентированная среда	Уровень 3 Интегрированная среда	Уровень 4 Вычислимая среда	[C)

- Сопоставимая с международной практикой концепция развития информационного моделирования.
- Гибкая система требований к информационным моделям.
- 3. Зафиксированная в нормативнотехнических документах система требований к информационным моделям (ячейки D)
- 4. Возможность **опережающей** отраслевой **стандартизации** (ячейки A-C)
- 5. Поддержка **переходных** технологий (ячейки E-G)

Департамент строительства города Москвы


Применение технологий информационного моделирования в службе ПТО

Контроль качества результатов информационного моделирования

Верификация ЦИМ

Процедура верификации информационной набор модели определяет структурированных проверок информационной модели, направленных на обеспечение соответствия представления геометрических и атрибутивных данных в информационной модели установленным нормам и требованиям, в том числе описанных в настоящем Стандарте.

В состав процедуры верификации информационной модели входят следующие типы проверок:

- Проверки структуры информационной модели (включая информационную структуру, топологию и др.);
- Проверки на геометрические коллизии между элементами информационной модели;
- Проверки уровня проработки, информационного наполнения и типов данных;
- Проверки обеспечения связанности данных информационной модели;
- Проверки соответствия классификации элементов информационной модели;
- Проверки оформления и структуры документации, сформированной из информационной модели.

Валидация ЦИМ

Процедура валидации информационных моделей определяет набор структурированных проверок информационной модели, направленных на обеспечение соответствия информации, описанной в форме информационной модели, предъявляемым настоящим Стандартом требованиям, а также требованиям применяемых в проекте нормативнотехнических регламентов и требованиям, установленным в техническом задании на проект.

В состав процедуры валидации информационной модели входят следующие типы проверок:

- о Проверки соответствия документации и информационной модели;
- о Проверки соответствия технических решений нормативно-техническим документам;
- о Проверки размещения элементов информационной модели;
- Проверки на логические и пространственно-временные коллизии.

Приоритизация выявляемых дефектов

Высокая степень критичности назначается нарушениям, которые влияют или могут повлиять на срок реализации проекта или его безопасность в соответствии с регламентом о технической безопасности.

Средняя степень критичности назначается нарушениям, которые влияют на стоимость проекта и влияние на стоимость дальнейшей эксплуатации объекта.

Низкая степень критичности назначается нарушениям, которые не влияют на общий ход реализации проекта и могут быть исправлены по месту.

- Дефекты с высоким уровнем критичности должны устраняться в срок до момента очередного этапа передачи информационной модели.
- Дефекты средней степени критичности должны устраняться не позднее двух последующих этапов передачи информационной модели.
- Дефекты низкой степени критичности устраняются только после устранения нарушений высокой и средней степеней критичности.

2

Программные продукты для контроля качества ЦИМ

AUTODESK MODEL CHECKER

invicara

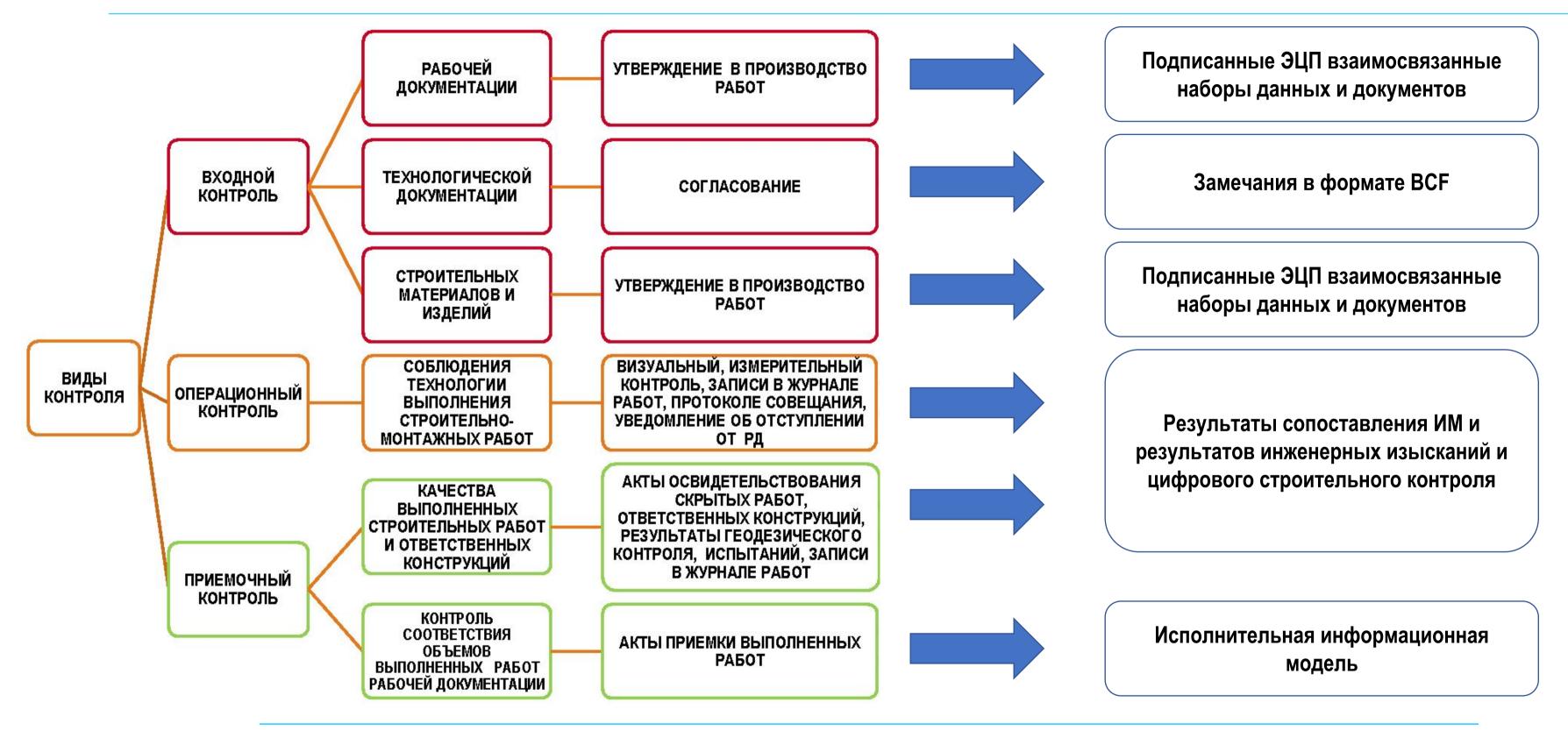
- о Проверка геометрических пересечений элементов
- о Проверка пространственных пересечений
- Проверка пространственно-временных пересечений
- Проверка полноты данных для каждого типа элементов
- Проверка корректности данных
- Логические проверки на соответствие НТД
- о Проверка топологии и взаимосвязей

BCF – открытый формат обмена замечаниями

BIM Collaboration Format (BCF)

Машиночитаемый формат данных формируется в виде файла формата открытой спецификации BCF (основанный на XML) и содержащий:

- о структурированную информацию о дефекте;
- о данные об относящихся к дефекту элементах модели;
- о фиксированную точку обзора;
- Замечания и комментарии в текстовом виде.


Правила заполнения атрибутивных данных для каждого нарушения устанавливаются Стандартом управления информации жизненного цикла объекта в соответствии с требованиями стандарта с открытой спецификацией ВСГ.

Система управления качеством

Источник: ГК «Спектурм»

Развитие Исполнительной модели в Эксплуатационную модель

Данные закупки и поставки Техническое и технологическое оборудования и комплектующих описание, включая паспорта, чертежи, модели, фотографии, LIDAR Данные монтажа и Точное пусконаладки местонахождение, включая иерархию оборудования История замен и ремонтов оборудования Производственный актив История производства (сертификаты на материалы, (оборудование, здания, сети) инспекции и результаты заводских испытаний) История технических и технологических показателей работы оборудования Инструкции по эксплуатации и ремонту, каталоги запасных частей и рекомендованные производителем Разрешительная документация (поверки, нормативы запасов Справочник контрагентов калибровки, испытания, разрешение на и история применение) взаимоотношений (в т.ч. сроки и условия гарантий) + интеграция сенсорных сетей в + моделирование технических и информационную модель технологических процессов

Департамент строительства города Москвы

Применение технологий информационного моделирования в службе ПТО

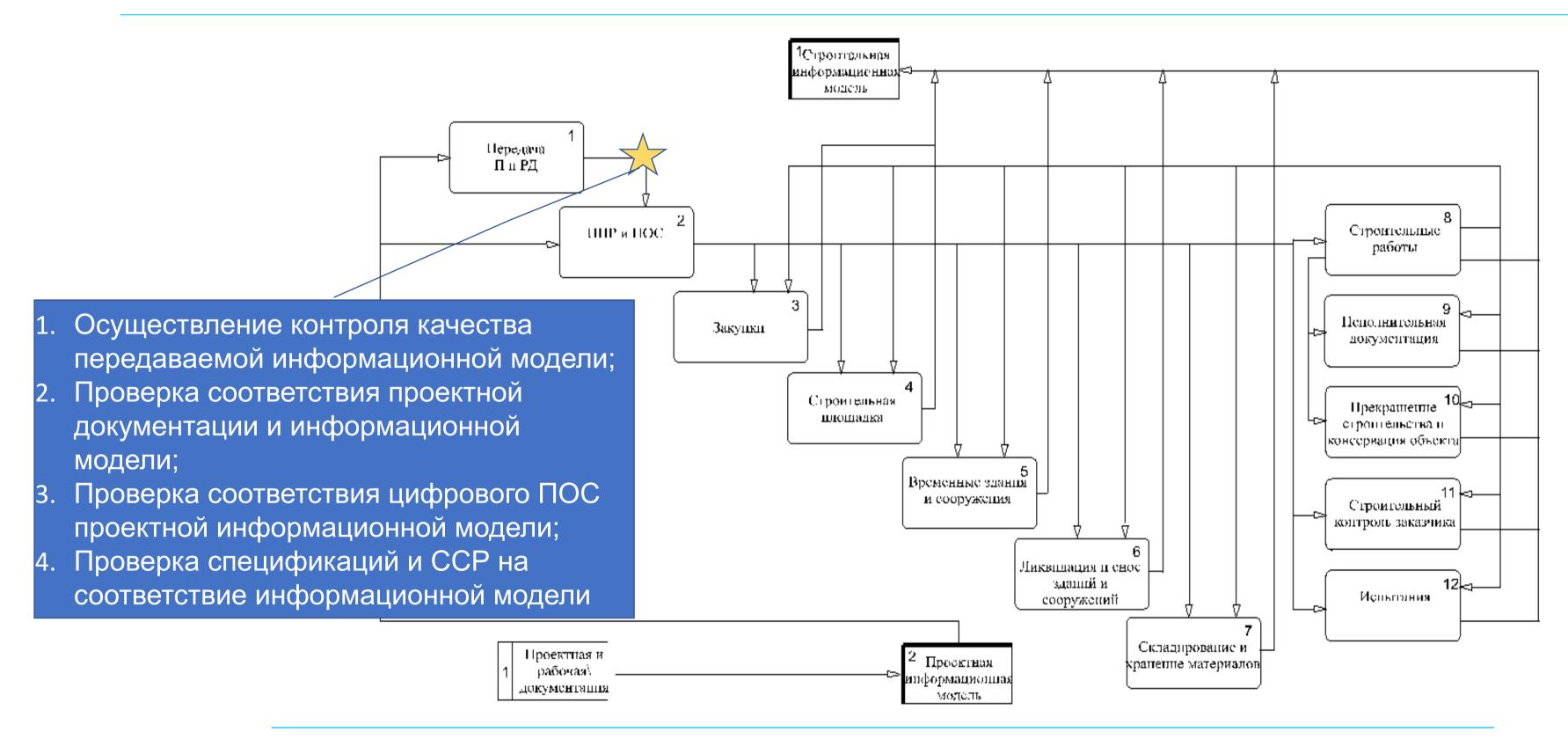
Методология применения отделами ПТО

Важные документы для применения ТИМ на проекте

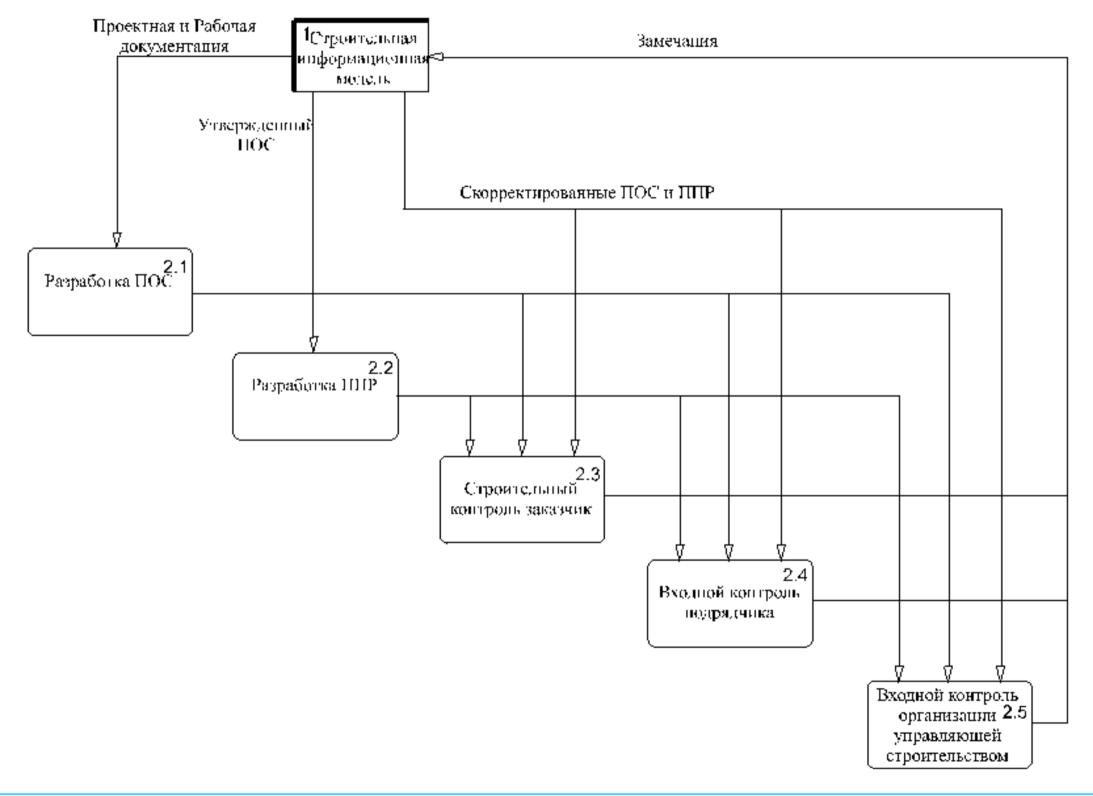
Стандарт управления информацией жизненного цикла (EIR)

Регламент применения технологии информационного моделирования на проекте (BEP)

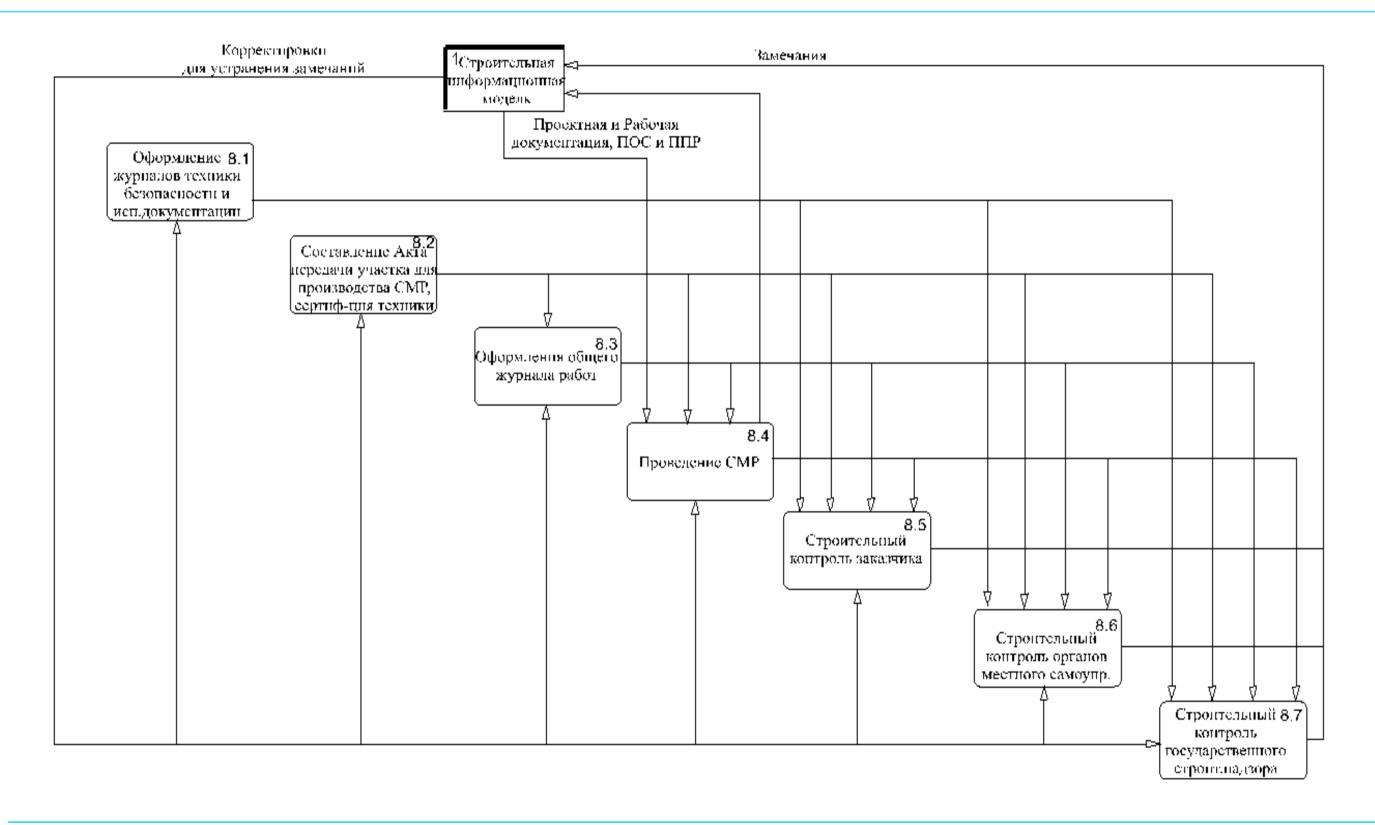
- Правила и последовательность разработки информационных моделей
- Правила классификации и кодирования
- Базовые правила работы в ЕИП
- Форматы информационного обмена
- Требования по использованию библиотек элементов и типовых решений
- Критерии и правила проверки качества информационной модели


- Функционально-ролевая модель взаимодействия участников проекта
- Правила информационного обмена участников проекта
- Разграничение доступа в ЕИП
- Правила информационного взаимодействия в рамках ЕИП
- Требования к программно-аппаратному оснащению участников проекта
- Требования к аналитике и отчетности
- График разработки информационных моделей

Проектная документация и информационная модель



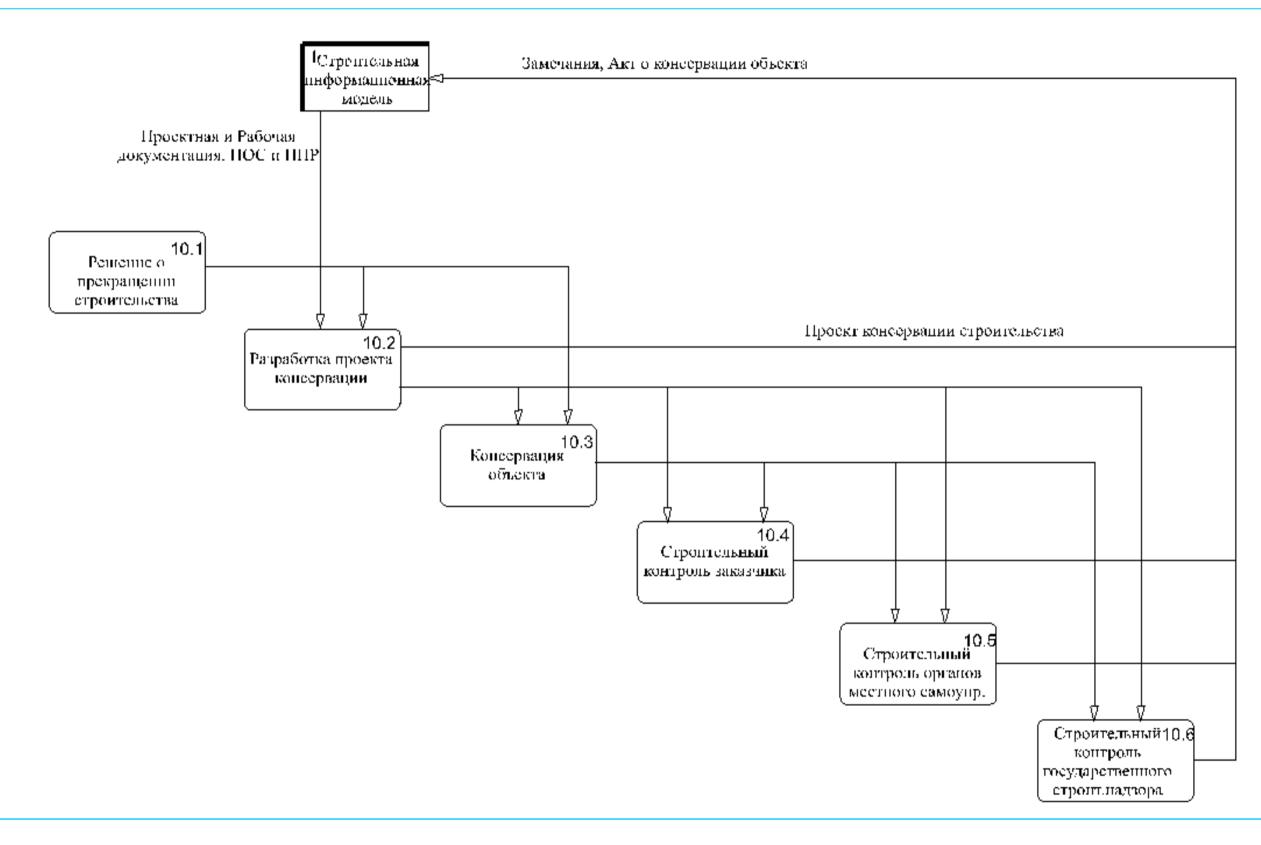
Взаимосвязь ПОС и ППР с информационной моделью


Замечания в формате ВСГ включая:

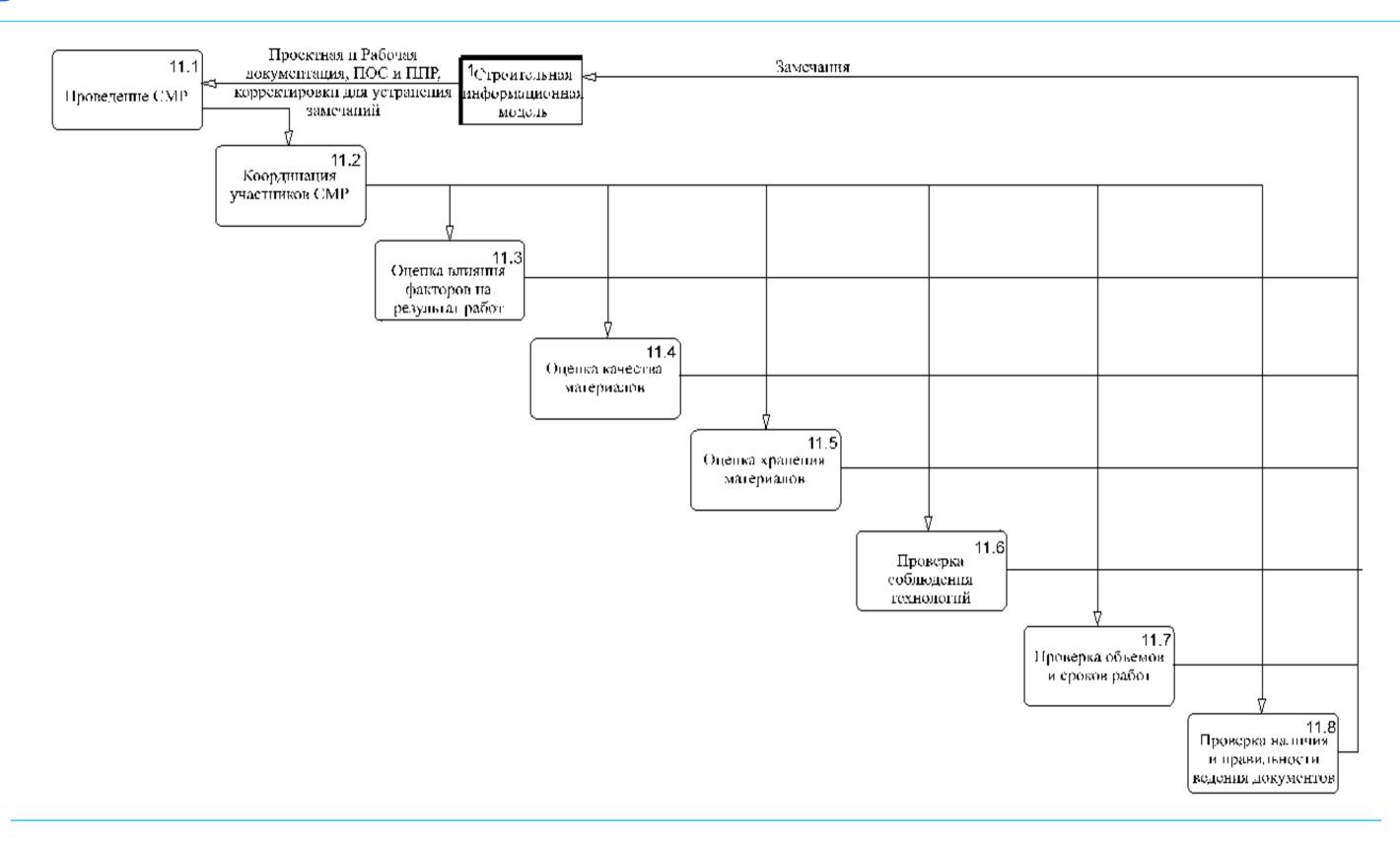
- скриншоты пространственновременных дефектов;
- Ссылки на НТД и НПА;
- Текстовые пояснения и комментарии;
- Аудио комментарии

Взаимосвязь СМР с информационной моделью

Взаимосвязь СМР с информационной моделью



Завершение строительства и информационное моделирование



Завершение строительства и информационное моделирование

Свод знаний по информационному моделированию

http://www.imbok.pro

