
Database Management
Systems.

Lecture 4

Content:

 Joining Multiple Tables

1. Inner Join
2. Left Join
3. Right Join
4. Outer Join
5. Self Join
6. Cross Join
7. Natural Join

JOINS

▪ PostgreSQL JOIN is used to combine columns from one or more
tables based on the values of the common columns between
related tables.

▪ The common columns are typically the primary key columns of
the first table and foreign key columns of the second table.

▪ PostgreSQL supports inner join, left join, right join, full outer
join, cross join, natural join, and a special kind of join
called self-join.

INNER JOIN

▪ The INNER JOIN keyword selects all rows from both
the tables if the condition satisfies.

▪ This keyword will create the result-set by combining all
rows from both the tables where the condition satisfies
i.e value of the common field will be same.

▪ Basic syntax:

SELECT table1.column1,table1.column2,table2.column1,....

FROM table1 INNER JOIN table2

ON table1.matching_column = table2.matching_column;

The following Venn diagram
illustrates how INNER JOIN clause works:

Example:

▪ Suppose you have two tables called basket_a and basket_b and that store fruits:

▪ CREATE TABLE basket_a (
 a INT PRIMARY KEY,
 fruit_a VARCHAR (100) NOT NULL
);

CREATE TABLE basket_b (
 b INT PRIMARY KEY,
 fruit_b VARCHAR (100) NOT NULL
);

INSERT INTO basket_a (a, fruit_a)
VALUES
 (1, 'Apple'),
 (2, 'Orange'),
 (3, 'Banana'),
 (4, 'Cucumber');

INSERT INTO basket_b (b, fruit_b)
VALUES
 (1, 'Orange'),
 (2, 'Apple'),
 (3, 'Watermelon'),
 (4, 'Pear');

▪ The tables have some common fruits such as apple and orange.

Example:

The inner join examines each row in the first table (basket_a).
It compares the value in the fruit_a column with the value
in the fruit_b column of each row in the second table (basket_b).
If these values are equal, the inner join creates a new row
that contains columns from both tables and adds this new row the result set.

LEFT JOIN

▪ This join returns all the rows of the table on the left side
of the join and matching rows for the table on the right
side of join.

▪ The rows for which there is no matching row on right
side, the result-set will contain null.

▪ LEFT JOIN is also known as LEFT OUTER JOIN

▪ Basic syntax:

SELECT table1.column1,table1.column2,table2.column1,....

FROM table1 LEFT JOIN table2

ON table1.matching_column = table2.matching_column;

The following Venn diagram
illustrates how LEFT JOIN clause works:

Example:

▪ The left join starts selecting data from the left table. It compares values in the
fruit_a column with the values in the fruit_b column in the basket_b table.

▪ If these values are equal, the left join creates a new row that contains columns of
both tables and adds this new row to the result set. (see the row #1 and #2 in the
result set).

▪ In case the values do not equal, the left join also creates a new row that contains
columns from both tables and adds it to the result set. However, it fills the
columns of the right table (basket_b) with null. (see the row #3 and #4 in the
result set).

RIGHT JOIN

▪ RIGHT JOIN is similar to LEFT JOIN.

▪ This join returns all the rows of the table on the right side of
the join and matching rows for the table on the left side of
join.

▪ The rows for which there is no matching row on left side, the
result-set will contain null.

▪ RIGHT JOIN is also known as RIGHT OUTER JOIN

▪ Basic syntax:

SELECT table1.column1,table1.column2,table2.column1,....

FROM table1 RIGHT JOIN table2

ON table1.matching_column = table2.matching_column;

The following Venn diagram
illustrates how RIGHT JOIN clause works:

Example:

▪ The right join is a reversed version of the left join. The right join starts
selecting data from the right table. It compares each value in the fruit_b
column of every row in the right table with each value in the fruit_a
column of every row in the fruit_a table.

▪ If these values are equal, the right join creates a new row that contains
columns from both tables.

▪ In case these values are not equal, the right join also creates a new row
that contains columns from both tables. However, it fills the columns in
the left table with NULL.

FULL JOIN

▪ FULL JOIN creates the result-set by combining result of
both LEFT JOIN and RIGHT JOIN.

▪ The result-set will contain all the rows from both the
tables.

▪ The rows for which there is no matching, the result-set
will contain NULL values

▪ Basic syntax:

SELECT table1.column1,table1.column2,table2.column1,....

FROM table1 FULL JOIN table2

ON table1.matching_column = table2.matching_column;

The following Venn diagram
illustrates how FULL JOIN clause works:

Example:

▪ The full outer join or full join returns a result set that
contains all rows from both left and right tables, with the
matching rows from both sides if available.

▪ In case there is no match, the columns of the table will
be filled with NULL.

CROSS JOIN

▪ A CROSS JOIN clause allows you to produce a
Cartesian Product of rows in two or more tables.

▪ Different from other join clauses such as LEFT JOIN or
INNER JOIN, the CROSS JOIN clause does not have a join
predicate.

▪ Basic syntax:

SELECT select_list

FROM T1 CROSS JOIN T2;

SELECT select_list

FROM T1, T2;
OR

Example:

▪ In this case CROSS JOIN works like INNER JOIN

NATURAL JOIN

▪ A NATURAL JOIN is a join that creates an implicit join based on
the same column names in the joined tables.

▪ A NATURAL JOIN can be an inner join or left join or right join. If
you do not specify a join explicitly e.g., INNER JOIN, LEFT
JOIN, RIGHT JOIN, PostgreSQL will use the INNER JOIN by default.

▪ If you use the asterisk (*) in the select list, the result will contain
the following columns:

- All the common columns, which are the columns from both tables
that have the same name.

- Every column from both tables, which is not a common column.

▪ Basic syntax:

SELECT select_list

FROM T1 NATURAL [INNER, LEFT, RIGHT] JOIN T2;

SELECT select_list FROM T1

INNER JOIN T2 USING (matching_column);

equivalent to:

Example:

Example:

SELF JOIN

▪ A self-join is a regular join that joins a table to itself.

▪ In practice, you typically use a self-join to query hierarchical data
or to compare rows within the same table.

▪ To form a self-join, you specify the same table twice with different
table aliases and provide the join predicate after
the ON keyword.

▪ The following query uses an INNER JOIN that joins the table to
itself:
SELECT select_list

FROM table_name t1 INNER JOIN table_name t2

ON join_predicate;

SELECT select_list

FROM table_name t1 LEFT JOIN table_name t2

ON join_predicate;

▪ Also, you can use the LEFT JOIN or RIGHT JOIN clause to
join table to itself like this:

