Database Management

Systems.

Lecture 4

Joining Multiple Tables

Inner Join
Left Join
Right Join
Outer Join
Self Join
Cross Join

Content:

Natural Join

= PostgreSQL JOIN is used to combine columns from one or more
tables based on the values of the common columns between
related tables.

= The common columns are typically the primary key columns of
the first table and foreign key columns of the second table.

= PostgreSQL supports inner join, left join, right join, full outer
join, cross join, natural join, and a special kind of join
called self-join.

= The INNER JOIN keyword selects all rows from both
the tables if the condition satisfies.

= This keyword will create the result-set by combining all
rows from both the tables where the condition satisfies
i.e value of the common field will be same.

= Basic syntax:

FROM tablel INNER JOIN table?

ON tablel.matching column = tableZ.matching column;

SELECT tablel.columnl, tablel.column2, table?2.columnl,

The following Venn diagram
illustrates how INNER JOIN clause works:

INNER JOIN

= Suppose you have two tables called basket_a and basket_b and that store fruits:

= CREATE TABLE basket a (
a INT PRIMARY KEY, B Output BH postgres.public.basket_a
fruit a VARCHAR (100) NOT NULL

4 rows - +

) ;

Qa + M fruit_a

CREATE TABLE basket_b (
b INT PRIMARY KEY,
fruit_b VARCHAR (100) NOT NULL 2 Orange

)i CENERE!

1 Apple

, 4 Cucumber
INSERT INTO basket a (a, fruit a)

VALUES

° (1, 'Apple'),
Example:
(3, 'Banana'),
(4, 'Cucumber');

@ Output BH postgres.public.basket_b
INSERT INTO basket b (b, fruit b) AT S +
VALUES
(1, 'Orange'), 12b ¢+ BF fruit_b
(2, 'Apple'), 1 Orange
(3, 'Watermelon'), E
(4, 'Pear'); Apple

3 Watermelon

= The tables have some common fruits such as apple and orange.

basket_a
basket_b

KN\
2 rows ™

A

Ta:+ IEfruit_a E: H fruit_b
Example:

1 Apple 2 Apple

2 Orange 1 Orange

The examines each row in the first table (basket_a).

It compares the value in the fruit_a column with the value

in the fruit_b column of each row in the second table (basket_b).

If these values are equal, the inner join creates a new row

that contains columns from both tables and adds this new row the result set.

This join returns all the rows of the table on the left side
of the join and matching rows for the table on the right
side of join.

The rows for which there is no matching row on right

_ side, the result-set will contain null.

LEFT JOIN is also known as LEFT OUTER JOIN

Basic syntax:

LEFT JOIN FROM tablel LEFT JOIN table?

ON tablel.matching column = tableZ.matching column;

SELECT tablel.columnl, tablel.column2, table2.columnl,

The following Venn diagram
illustrates how LEFT JOIN clause works:

LEFT OUTER JOIN

Q basket_a

basket_b

B Output BH Result 24
4 rows S

Ha + BE fruit_a £ T fruit_b

1 Apple 2 Apple

Example: 2o e
L}

Banana

Cucumber

starts selecting data from the left table. It compares values in the
fruit_a column with the values in the fruit_b column in the basket_ b table.

= If these values are equal, the left join creates a new row that contains columns of
both tables and adds this new row to the result set. (see the row #1 and #2 in the
result set).

= In case the values do not equal, the left join also creates a new row that contains
columns from both tables and adds it to the result set. However, it fills the
columns of the right table (basket_b) with null. (see the row #3 and #4 in the
result set).

= RIGHT JOIN is similar to LEFT JOIN.

= This join returns all the rows of the table on the right side of
the join and matching rows for the table on the left side of
join.

_ = The rows for which there is no matching row on left side, the
result-set will contain null.

= RIGHT JOIN is also known as RIGHT OUTER JOIN

= Basic syntax:

RIG HT JOI N SELECT tablel.columnl, tablel.column2, table2.columnl,

FROM tablel RIGHT JOIN tableZ?

ON tablel.matching column = tableZ.matching column;

The following Venn diagram
illustrates how RIGHT JOIN clause works:

RIGHT OUTER JOIN

basket_a
basket_b

H fruit_a Hb ¢+ IR fruit_b
2 Orange 1 Orange
1 Apple 2 Apple

Exa m p I e : 3 Watermelon

4 Pear

C is a reversed version of the left join. The right join starts
selecting data from the right table. It compares each value in the fruit_b
column of every row in the right table with each value in the fruit_a
column of every row in the fruit_a table.

= If these values are equal, the right join creates a new row that contains
columns from both tables.

= In case these values are not equal, the right join also creates a new row
that contains columns from both tables. However, it fills the columns in
the left table with NULL.

FULL JOIN creates the result-set by combining result of
both LEFT JOIN and RIGHT JOIN.

The result-set will contain all the rows from both the

tables.

= The rows for which there is no matching, the result-set
will contain NULL values

= Basic syntax:

F U LL JOI N SELECT tablel.columnl, tablel.column2, table2.columnl,

FROM tablel FULL JOIN tableZ2

ON tablel.matching column = tableZ.matching column;

The following Venn diagram
illustrates how FULL JOIN clause works:

FULL OUTER JOIN

@® basket_a

basket_b

H fruit_a Hb + BH fruit_b
1 Apple 2 Apple
2 Orange 1 Orange
3 Banana

4 Cucumber

Example:

3 Watermelon

4 Pear

= The full outer joinor full join returns a result set that

contains all rows from both left and right tables, with the
matching rows from both sides if available.

= In case there is no match, the columns of the table will
be filled with NULL.

= A CROSS JOIN clause allows you to produce a
Cartesian Product of rows in two or more tables.

= Different from other join clauses such as LEFT JOIN or

_ INNER JOIN, the CROSS JOIN clause does not have a join
predicate.

= Basic syntax:

SELECT select list
SELECT select list OR

CROSS JOIN

FROM T1, T2;
FROM T1 CROSS JOIN T2;

CROSS JOIN

TABLE A TABLE B

* basket_a basket_b

basket_a. = basket_b.

K\
A

Ha + B fruit_a £z H fruit_b

2

Example: 1 Apple 2 Apple

2 Orange 1 Orange

* In this case GROSS JOINworks like INNER JOIN

= A NATURAL JOIN is a join that creates an implicit join based on
the same column names in the joined tables.

= A NATURAL JOIN can be an inner join or left join or right join. If
you do not specify a join explicitly e.g., INNER JOIN, LEFT
JOIN, RIGHT JOIN, PostgreSQL will use the INNER JOIN by default.

= If you use the asterisk (*) in the select list, the result will contain
the following columns:

- All the common columns, which are the columns from both tables
that have the same name.

N AT U R A L J O I N - Every column from both tables, which is not a common column.

= Basic syntax:

SELECT select list

FROM T1 NATURAL [INNER, LEFT, RIGHT] JOIN TZ2;

equivalent to:

SELECT select list FROM T1

INNER JOIN T2 USING (matching column);

categories
categories (

products
products (

categories (

Example:

3 rows - +

39 category_id + BH category_name
1 Smart Phone
2 Laptop
3 Tablet

categories (

6 rows

53 product_id

XH product_name
iPhone

Samsung Galaxy
HP Elite

Lenovo Thinkpad
iPad

Kindle Fire

Tx: Auto DDL #

A% category_id

products categories

H category_id * H product_id ¢ BH product_name ¢ [BH category_name
iPhone Smart Phone

Samsung Galaxy Smart Phone

Lenovo Thinkpad Laptop

1
al
2 5 HP Elite Laptop
2
3

Example:

iPad Tablet
Kindle Fire Tablet

productg categories

(

SELF JOIN

A self-join is a regular join that joins a table to itself.

In practice, you typically use a self-join to query hierarchical data
or to compare rows within the same table.

To form a self-join, you specify the same table twice with different
table aliases and provide the join predicate after
the ON keyword.

The following query uses an INNER JOIN that joins the table to

itself:
SELECT select list

FROM table name tl INNER JOIN table name t2

ON join predicate;

Also, you can use the LEFT JOIN or RIGHT JOIN clause to
join table to itself like this:

SELECT select list

FROM table name tl LEFT JOIN table name t2

ON join predicate;

