08.11.2021

Тема: Сечения куба, призмы, пирамиды

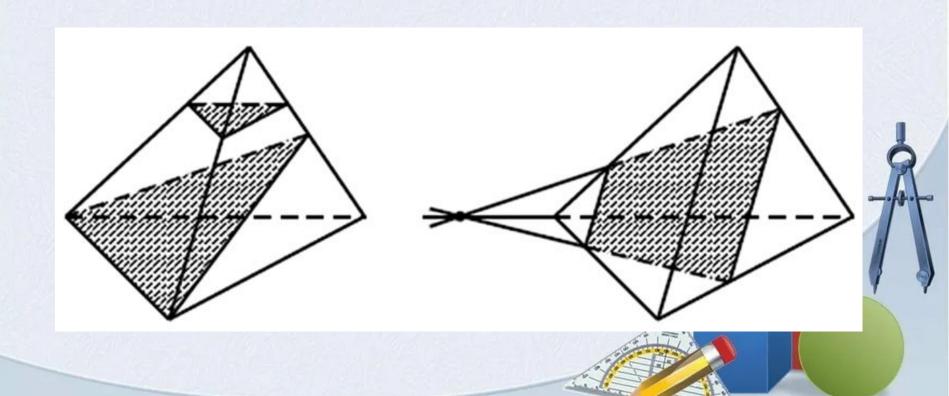
Написать конспект и задачи, выполняя чертежи.

Высылать в личном сообщении в вк или на почту

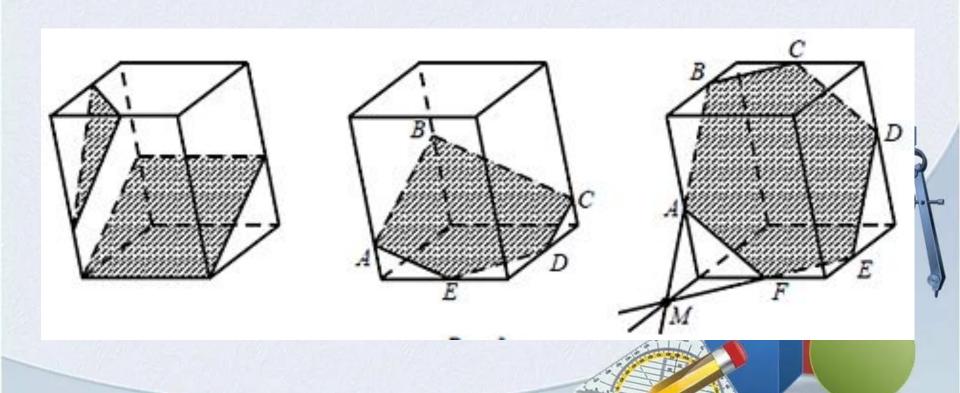
SHPAK.IRINA.S@yandex.ru

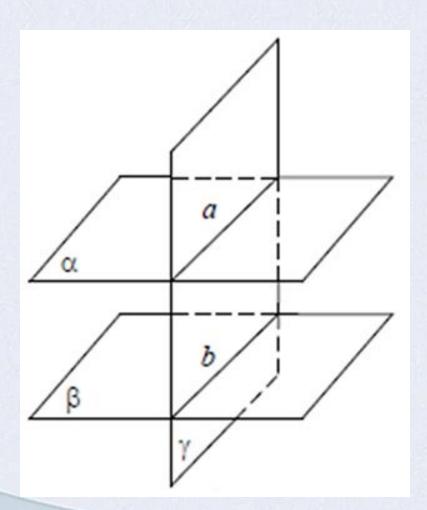
Перед каждым заданием в тетради пишем ФИО, дата, тема урока

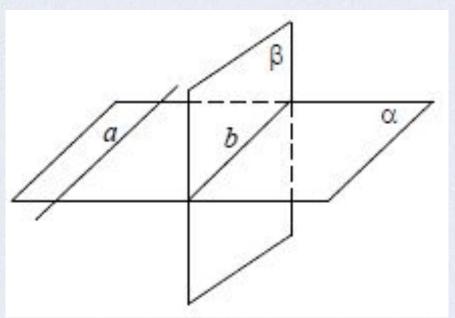
Сечение многогранников


- ✔ Секущая плоскость многогранника любая плоскость, по обе стороны от которой имеются точки данного многогранника.
- ✔ Секущая плоскость пересекает грани многогранника по отрезкам.

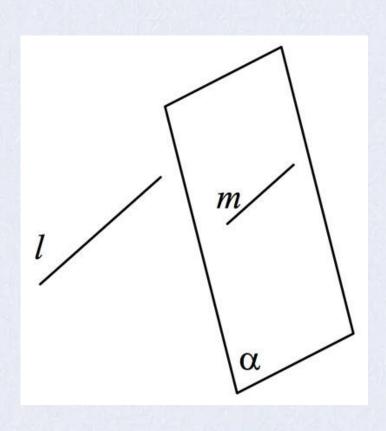
Сечение многогранника – многоугольник, лежащий в секущей плоскости и ограниценный пинией пересечения.

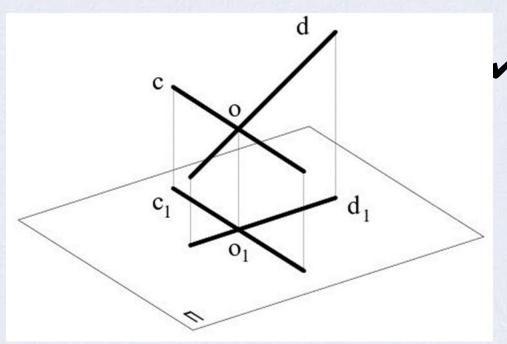

Сечение тетраэдра


- ✓ Тетраэдр имеет четыре грани.
- ✔ Его сечениями могут быть только треугольники и четырехугольники.


Сечение параллелепипеда

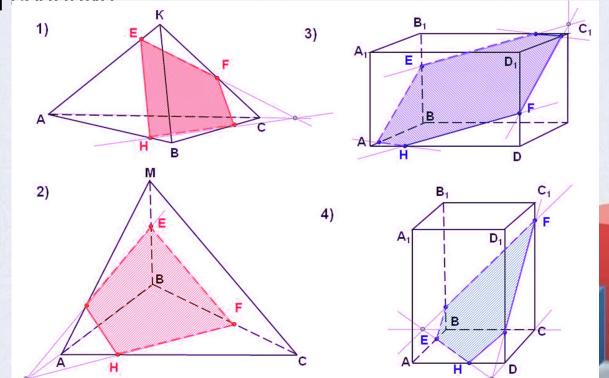
- ✓ Параллелепипед имеет шесть граней.
- ✔ Его сечениями могут быть треугольники, четырехугольники, пятиугольники и шестиугольники.

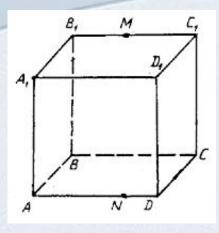



✓ Теорема 1. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. Поэтому секущая плоскость пересекает плоскости параллельных граней по параллельным прямым.

✓ Теорема 2. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.

✓ Теорема 3. Если прямая І параллельна какой либо прямой т, проведённой в плоскости α , то она параллельна и самой плоскости α .

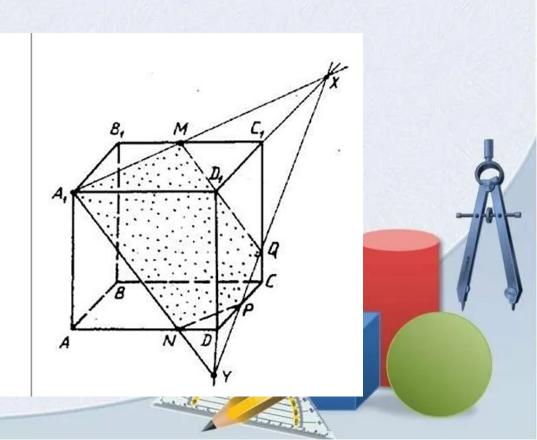

✓ Теорема 4. Если прямая, лежащая в плоскости сечения, не параллельна плоскости некоторой грани, то она пересекается со своей проекцией на эту грань.

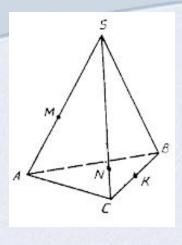

Алгоритм построения сечения

- 1. Если две точки секущей плоскости лежат в плоскости одной грани, то проводим через них прямую. Часть прямой, лежащая в плоскости грани сторона сечения.
- Если прямая а является общей прямой секущей плоскости и плоскости какой-либо грани, то находим точки пересечения прямой а с прямыми, содержащими ребра этой грани. Полученные точки новые точки секущей плоскости, лежащие в плоскостях граней.
- 3. Если никакие две из данных точек не лежат в плоскости одной грани, то строим вспомогательное сечение, содержащее любые две данные точки, а затем выполняем шаги 1, 2.

Контроль правильности построенного сечения

- ✔ Все вершины сечения лежат на ребрах многогранника.
- ✔ Все стороны сечения лежат в гранях многогранника.

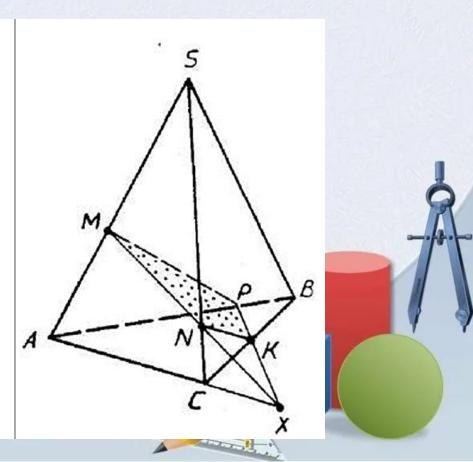


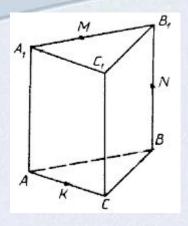

Пример 1

Построить сечение куба плоскостью, проходящей через точки: A_1 ; $M \in B_1C_1$; $N \in AD$.

Решение:

- 1) $A \leftrightarrow M$;
- 2) $A_1M \cap D_1C_1 = X$;
- 3) $A_1 \leftrightarrow N$;
- 4) $A_1N \cap DD_1 = Y$;
- 5) $X \leftrightarrow Y$;
- 6) $XY \cap CC_1 = Q$;
- 7) $XY \cap DC_1 = P$;
- 8) $M \leftrightarrow Q$;
- 9) $N \leftrightarrow P$;
- 10) $A_1 MQPN \rightarrow Искомое сечение$

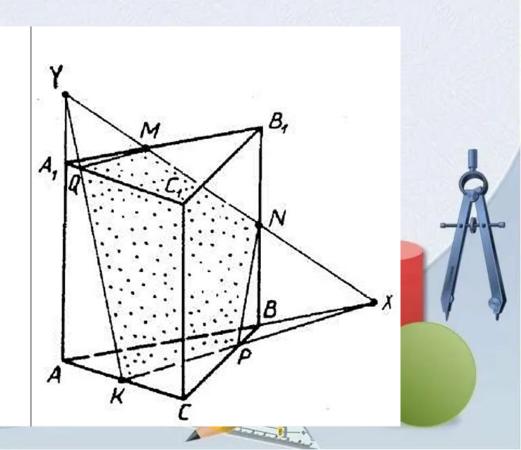




Пример 2

Построить сечение тетраэдра SABC плоскостью, проходящей через точки: $M \in SA$; $N \in SC$; $K \in BC$ Решение:

- 1) $M \leftrightarrow N$;
- 2) $MN \cap AC = X$;
- 3) $X \leftrightarrow K$;
- 4) $XK \cap AB = P$;
- 5) $P \leftrightarrow M$;
- 6) $MNKP \rightarrow ucкoмое$ сечение



Пример 3

Построить сечение треугольной призмы $ABCA_1B_1C_1$ плоскостью, проходящей через точки: $M \in A_1B_1$; $N \in BB_1$ и $K \in AC$.

Решение:

- 1) $M \leftrightarrow N$;
- 2) $MN \cap AB = X$;
- 3) $X \leftrightarrow K$;
- 4) $XK \cap BC = P$;
- 5) $MN \cap AA_1 = Y$;
- 6) $Y \leftrightarrow K$;
- 7) $YK \cap A_1C_1 = Q$;
- 8) $YK \cap A_1C_1 = Q$;
- 9) $Q \leftrightarrow M$;
- 10) $MNPKQ \rightarrow ucкoмое сечение;$

