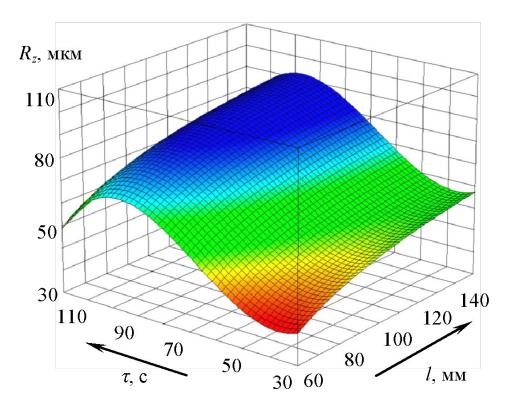

ПЛАНИРОВАНИЕ И ОРГАНИЗАЦИЯ ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА

Зверев Егор Александрович к.т.н., доцент каф. ПТМ

Содержание курса ПиОПЭ


- 1. Случайные величины и параметры их распределений.
- 2. Законы распределения случайных величин.
- 3. Статистические гипотезы.
- 4. Факторный анализ.
- 5. Планирование первого порядка.
- 6. Математические планы второго порядка.
- 7. Полный факторный эксперимент.
- 8. Дробный факторный эксперимент.
- 9. Корреляционный анализ.
- 10. Регрессионные зависимости.
- 11. Оценивание с помощью доверительного интервала.
- 12. Отсев грубых погрешностей.
- 13. Методы поиска оптимальных решений.

Модель объекта исследования в виде черного ящика

$$y = f(x_1, x_2, ..., x_k).$$

Функциональные зависимости

Зависимость шероховатости поверхности от параметров процесса

$$R_z(l,\tau) = 131,6 - \frac{2351,2}{l} - 3,72\tau + 0,07\tau^2 - 3,44 \cdot 10^{-4}\tau^3$$

Регрессионные зависимости

Квадратичный полином

$$\hat{y}_u = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{12} x_1 x_2 + b_{13} x_1 x_3 + b_{23} x_2 x_3 + b_{11} x_1^2 + b_{22} x_2^2 + b_{33} x_3^2 + b_{123} x_1 x_2 x_3$$

где b_{0} , b_{i} , b_{ii} , b_{ii} – коэффициенты регрессии

Уровни и интервалы варьирования входных факторов

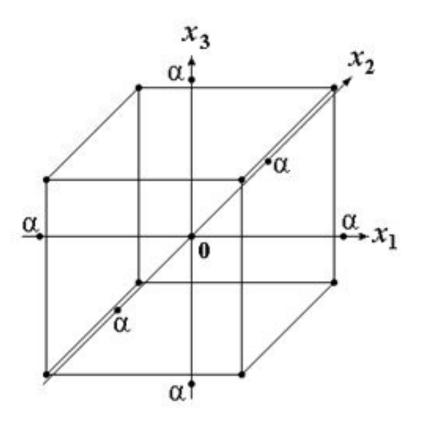
		Интервал				
Факторы	-1,25	-1	0	+1	+1,25	ы варьирова ния
X_1 — техфактор T_1	116	120	135	150	160	15
$egin{aligned} X_2^{} - \text{техфактор} \ T_2^{} \end{aligned}$	13	15	20	25	27	5
X_3 – техфактор T_3	80	90	120	150	160	30

Переход от безразмерных к натуральным величинам

$$X_i = \frac{c_i - c_{i0}}{\varepsilon},$$

где X_i – кодированное значение фактора;

 ε – интервал варьирования;


 c_i и c_{i0} — значения фактора (текущее значение и значение на нулевом уровне).

Пример:

$$X_1 = \frac{T_1 - 135}{15}$$
; $X_2 = \frac{T_2 - 20}{5}$; $X_3 = \frac{T_3 - 120}{30}$.

Выбор плана проведения эксперимента

Планы второго порядка

Графическое представление ОЦКП для n=3

Матрица ортогонального центральнокомпозиционного плана

U	x ₀	x_I	x2	<i>x</i> ₃	x ₁ x ₂	x _I x ₃	X ₂ x ₃	X1X2X 3	Y
1	+1	-1	-1	-1	+1	+1	+1	-1	Y_I
2	+1	+1	-1	-1	-1	-1	+1	+1	Y_2
3	+1	-1	+1	-1	-1	+1	-1	+1	<i>Y</i> ₃
4	+1	+1	+1	-1	+1	-1	-1	-1	Y4
5	+1	-1	-1	+1	+1	-1	-1	+1	Y5
6	+1	+1	-1	+1	-1	+1	-1	-1	Y_6
7	+1	-1	+1	+1	-1	-1	+1	-1	Y7
8	+1	+1	+1	+1	+1	+1	+1	+1	Y_8
9	+1	-1,215	0	0	0	0	0	0	Y_g
10	+1	+1,215	0	0	0	0	0	0	Y_{10}
11	+1	0	-1,215	0	0	0	0	0	Y_{II}
12	+1	0	+1,215	0	0	0	0	0	Y_{12}
13	+1	0	0	-1,215	0	0	0	0	Y13
14	+1	0	0	+1,215	0	0	0	0	Y14
15	+1	0	0	0	0	0	0	0	Y15
$\sum_{U=1}^N x_{iU}$	N	0	0	0	0	0	0	0	
$\sum_{U=1}^{N} x_{iU}^2$	15	10,952			8				

Матрица планирования эксперимента

№ T	Техфактор Т ₁	Техфактор Т ₂	Техфактор	T ₁	T ₂	T ₃
			T ₃	X_{I}	<i>X</i> ₂	<i>X</i> ₃
1	120	15	15 90		-1	-1
2	150	15	90	+1	-1	-1
3	120	25	90	-1	+1	-1
4	150	25	90	+1	+1	-1
5	120	15	150	-1	-1	+1
6	150	15	150	+1	-1	+1
7	120	25	150	-1	+1	+1
8	150	25	150	+1	+1	+1
9	116	20	120	-1,25	0	0
10	160	20	120	+1,25	0	0
11	135	13	120	0	-1,25	0
12	135	27	120	0	+1,25	0
13	135	20	80	0	0	-1,25
14	135	20	160	0	0	+1,25
15	135	20	120	0	0	0

Результаты исследований

№ опыта	Показатель качества K_1	Показатель качества K_2	Показатель качества K_3	
1	18,0	22,0	22,3	
2	25	13,7	48,7	
3	15,5	20,1	14,3	
4	23,1	16,2	34,7	
5	12,7	23,4	12,7	
6	18,0	17,2	28,7	
7	9,8	25,1	7,3	
8	18,8	17,4	22,3	
9	16,4	16,3	20,3	
10	26,4	4,0	42,0	
11	14,4	23,1	29,3	
12	13,2	25,9	13,67	
13	20,9	16,2	30,0	
14	16,1	21,5	12,67	
15	19,2	16,3	24,3	

Расчет коэффициентов уравнений регрессии

$$\hat{y}_u = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{12} x_1 x_2 + b_{13} x_1 x_3 + b_{23} x_2 x_3 + b_{11} x_1^2 + b_{22} x_2^2 + b_{33} x_3^2 + b_{123} x_1 x_2 x_3$$

$$b_i = \frac{\sum_{i=1}^{N} x_{iu} y_u}{\sum_{u=1}^{N} x_{iu}^2},$$

где N – общее число опытов;

 x_{iu} — кодированное значение i-го фактора в u-ом опыте; y_u — текущее значение выходного фактора в u-ом опыте.

Оценка значимости коэффициентов регрессии и проверки адекватности полученных уравнений

$$t_{i} = \frac{b_{i}}{S\langle b_{i} \rangle} \qquad F = \frac{S_{\text{ад}}^{2}}{S^{2}\langle \overline{y} \rangle}$$

Критерий Стьюдента

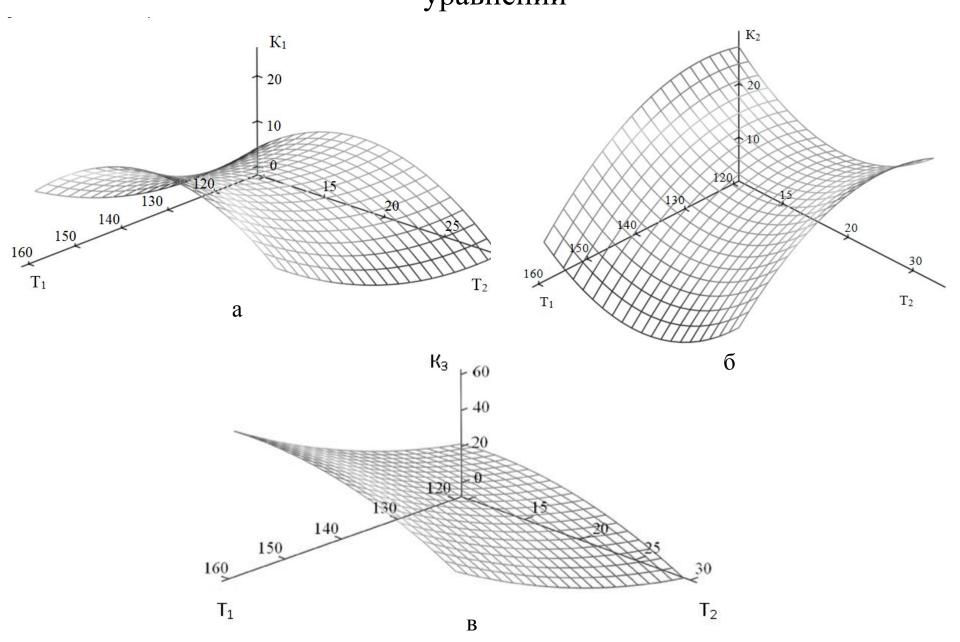
Критерий Фишера

Система регрессионных уравнений технологического процесса в безразмерных величинах

$$y_1 = 18,14 + 3,74x_1 - 0,72x_2 - 2,58x_3 + 2,02x_1^2 - 3,11x_2^2 + 0,53x_1x_2,$$

$$y_2 = 18,94 - 3,01x_1 + 0,7x_2 + 1,78x_3 - 4,04x_1^2 + 3,98x_2^2 + 2,9x_3^2 + 0,6x_1x_2,$$

$$y_3 = 24,5 + 9,47x_1 - 4,48x_2 - 6,38x_3 + 4,06x_1^2 - 2,48x_2^2 - 2,59x_3^2 - 1,94x_1x_3$$


Система регрессионных уравнений технологического процесса в натуральных величинах

$$K_1 = 130,62 - 2,316T_1 + 3,878T_2 - 0,086T_3 + 0,009T_1^2 - 0,124T_2^2 + 0,007T_1T_2,$$

$$K_2 = -159,45 + 4,48T_1 - 7,308T_2 - 0,714T_3 - 0,018T_1^2 + 0,159T_2^2 + 0,003T_3^2 + 0,008T_1T_2,$$

$$K_3 = 161,22 - 3,713T_1 + 0,018T_1^2 + 3T_2 - 0,099T_2^2 + 1,06T_3 - 0,003T_3^2 - 0,004T_1T_3.$$

Пример Графическое отображение системы регрессионных уравнений

Степенные зависимости

Зависимость степенного вида

$$K_i = C_i T_1^{\alpha} T_2^{\beta} T_3^{\gamma}$$

где T_{I} , T_{2} , T_{3} , — технологические факторы; C_{i} , α , β , γ — коэффициент и показатели степени

Матрица проведения эксперимента по математическому плану второго порядка

№ Экс- пери- мента		Техн	Результаты эксперимента						
	T <u>1</u>	T <u>2</u>	Т3	Кодовые обозначения				Среднее	1-TC
				X_0	X_{l}	X_2	<i>X</i> ₃	значение К ₁	y=lgK ₁
1	120	15	90	+1	-1	-1	-1	51,73	1,714
2	150	15	90	+1	+1	-1	-1	82,47	1,916
3	120	25	90	+1	-1	+1	-1	31,50	1,498
4	150	25	90	+1	+1	+1	-1	64,67	1,811
5	120	15	150	+1	-1	-1	+1	24,00	1,380
6	150	15	150	+1	+1	-1	+1	54,03	1,733
7	120	25	150	+1	-1	+1	+1	19,30	1,286
8	150	25	150	+1	+1	+1	+1	43,17	1,635
9	134	19	116	+1	0	0	0	54,01	1,788
10	134	19	116	+1	0	0	0	60,03	1,778
11	134	19	116	+1	0	0	0	58,15	1,763
12	134	19	116	+1	0	0	0	49,40	1,690

Расчет коэффициентов степенных уравнений

$$\alpha = \frac{\theta_1}{\lg T_{1\max} - \lg T_{1\min}}; \qquad \gamma = \frac{\theta_3}{\lg T_{3\max} - \lg T_{3\min}};$$

$$\beta = \frac{\theta_2}{\lg T_{2\max} - \lg T_{2\min}}; \qquad C = 10^{\theta_0 - \alpha \lg T_{1\min} - \beta \lg T_{2\min} - \gamma \lg T_{3\min}}.$$

$$\theta_0 = \frac{1}{12} (y_1 + y_2 + \dots + y_{12});$$

$$\theta_1 = \frac{1}{8} (-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8);$$

$$\theta_2 = \frac{1}{8} (-y_1 - y_2 + y_3 + y_4 - y_5 - y_6 + y_7 + y_8);$$

$$\theta_3 = \frac{1}{8} (-y_1 - y_2 - y_3 - y_4 + y_5 + y_6 + y_7 + y_8).$$

Пример

Степенная зависимость

$$K_1 = 0.64T_1^{1.52}T_2^{-0.291}T_3^{-0.492}$$
.