СИЛЬНОЕ И ОЩУТИМОЕ ЗЕМЛЕТРЯСЕНИЕ 5 АПРЕЛЯ 2017 г. с *Мw*=6.0, *I*₀=8 БАЛЛОВ В ВОСТОЧНОМ КОПЕТДАГЕ

Н.В. Петрова¹, Л.В. Безменова², А.Д. Курова¹

¹ФИЦ ЕГС РАН, г. Обнинск, ² Институт сейсмологии и физики атмосферы АН Туркменистана, г. Ашхабад

12-16 сентября 2022 г.

г. Минск, Беларусь

5 апреля 2017 г. в 06^h09^m по Гринвичу в 38 км к северо-востоку от иранского селения Сефид Санг произошло сильное и ощутимое землетрясение с Mw_{GCMT} =6.0. Несмотря на низкую плотность населения, землетрясение вызвало разрушения от 40 до 100% строений в четырех селениях северо-восточного Ирана, в результате 2 человека погибли и 100 получили ранения.

Землетрясение, локализованное в зоне контакта юго-восточного окончания горных структур Копетдага с Биналудом, оказалось самым крупным сейсмическим событием в радиусе 45 км от эпицентра за всю сейсмическую историю региона. Как показало исследование исторической сейсмичности (*рис.* 1), ближайшие сопоставимые или большие по магнитуде землетрясения датированы 84 г., 765 г. н.э. (*M*=6.5 и *M*=7.5 соответственно, Δ =73 *км* к югу) и 1904 г. (*Ms*=6.6, Δ =46 *км* к западу от эпицентра).

Согласно интернет-анкете, размещенной на сайте Геологической службы США (USGS), на иранской территории землетрясение 05.04.2017 г. 6 баллов проявилось С максимальной интенсивностью ПО Модифицированной шкале интенсивности Меркалли (ММ) в г. Торбете-Джам, Иран (77 км), 5 баллов – в иранских городах Мешхед (82 км), Серахс (101 км) и Ченаран (138 км). В Туркменистане, по сообщениям заведующих ближайших к эпицентру сейсмических станций, 3-балльные сотрясения ощущались в поселке Серахс (104 км) и в г. Серхетабад (190 км), в г. Ашхабаде (289 км) – 2–3 балла по шкале MSK-64. Шкалы MM и MSK-64 практически идентичны [ГОСТ..., 2017], однако полученные в Туркменистане оценки интенсивности сотрясений в пос. Серахс и г. Ашхабад занижены по сравнению с приведенными на сайте USGS.

Задачами исследования являются:

- Уточнение оценок интенсивности сотрясений в населенных пунктах Туркменистана с привлечением акселерограмм и велосиграмм расположенных там сейсмических станций;
- Исследование особенностей макросейсмического поля землетрясения 05.04.2017 г. с учетом уточненных данных;
- Исследование особенностей афтершокового процесса;
- Уточнение геометрии плоскости разрыва по комплексу данных.

ИНСТРУМЕНТАЛЬНЫЕ ДАННЫЕ

Исследовались инструментальные данные об основном толчке и его афтершоках, полученные единой сетью сейсмических станций Института сейсмологии и физики атмосферы Академии наук Туркменистана (ИСиФА АНТ), с привлечением данных международных сейсмологических центров.

Результаты локации разными агентствами эпицентров землетрясения 5 апреля.2017 г. и максимального афтершока 2 мая 2017 г. показаны на *рис. 2а. Рис. 2б* иллюстрирует вектор смещения максимального афтершока на юго-восток относительно главного толчка по данным КОП, MOS, ISC, GCMT, TEH, THR, IDC.

Fig. 2a. Epicenters of the main shock on April 5, 2017 and its maximum aftershock on May 2 according to the seismic stations of Turkmenistan (KOP) and other seismological centers.

1 – эпицентр главного толчка, название агентства указано рядом со значком; 2 – то же для эпицентра максимального афтершока: 3 – активный раздом [Бауманов и др. 2022]

Рис. 26. Вектор миграции афтершока 02.05.2017 г. на юго-восток от эпицентра главного толчка по данным разных агентств.

Fig 2b. Southeast migration of the May 2, 2017 aftershock from the mainshock according to data of different agencies.

 эпицентр главного толчка и название агентства, решение которого приведено; 2 – вектор миграции; 3 – активный разлом [Бачманов и др., 2022] Смещение эпицентра максимального афтершока на юго-восток по данным всех агентств, за исключением NEIC (*puc. 26*), косвенно свидетельствует в пользу ориентации в этом направлении плоскости разрыва в очаге главного толчка. В этом же направлении ориентировано облако афтершоков и падающая на северо-восток нодальная плоскость в решениях механизмов очагов главного толчка и максимального афтершока, по которой произошел взброс с незначительными компонентами сдвига (*puc.3*). Особенно четко прослеживается цепочка эпицентров наиболее крупных событий афтершоковой серии от эпицентра главного толчка до максимального афтершока, которая локализована на северозападном продолжении безымянного активного разлома [Бачманов и др., 2017], параллельного Кашафрудскому разлому с северо-восточным падением (*puc.3*). Можно предположить, что разрыв в очаге землетрясения 05.04.2017 г. произошел по скрытому под осадочной толщей участку безымянного разлома, параллельного Кашафрудскому, или продолжил его.

Рис. 3. Афтершоки землетрясения 05.04.2017 г. и механизмы очагов главного толчка (слева) и его максимального афтершока 2 мая (справа) по данным разных агентств.

энергетический класс К_р; 2 – активный разлом
[Бачманов и др., 2022]; 3 – линии вертикальных разрезов
вдоль (АБ) и поперек (ВГ) облака афтершоков,
представленных на рис. 4

Fig. 3. Aftershocks of the April 5, 2017 earthquake and focal mechanisms of the main shock (left) and its maximum aftershock on May 2 (right) according to data from different agencies

1 - energy class K_R =lgE; 2 – active fault (Bachmanov et al., 2022); 3 – lines of vertical sections along (AB) and across (SH) the aftershock cloud shown in Fig.4

Вертикальные разрезы облака афтершоков вдоль линии АБ на *рис.* 3, продолжающей вышеупомянутый разлом, и перпендикулярно к ней (линия ВГ) показаны на *рис.* 4 а, б. Облако размыто по этажам глубин до h=34 км, однако максимальная плотность афтершоков приходится на интервалы h=3-4 км и h=11-12 км (*рис.* 4 а, б, в), связанные, вероятно, с верхней и нижней границами плоскости разрыва при главном толчке. В этой интерпретации проекция плоскости разрыва на вертикальную плоскость вдоль линии АБ (красный прямоугольник на *рис.* 4 а) имеет длину L=30 км и ширину $\Delta h=10$ км. На *рис.* 4 б прослеживается погружение облака афтершоков в юго-западном направлении под углом $\alpha=59^\circ$, с учетом которого ширина плоскости разрыва составляет W=11.7 км. Эти параметры близки к длине L=22 км и ширине W=9.1 км плоскости разрыва землетрясения с $Ms_{ISC}=6.0$ согласно соотношениям Ризниченко [Ризниченко, 1976].

Падение плоскости разрыва на юго-запад не согласуется с северо-восточным падением нодальной плоскости север-западного простирания NP2 механизма очага главного толчка (puc. 3), выбранной в действующей. Вероятно, юго-западное погружение облака афтершоков качестве связано не непосред эм слоев в а земной ко -20 30 -10 30 15 20 25 30 35 0-2 3-4 5-6 7-8 10 10 9-10 11-12 13-14 h, KM h, KM 20 20 15-16 17-18 19-20 21-22 30 23 - 2430 27-28 29-30 40 40 31-32 33-34 35-42

Рис. 4. Распределение афтершоков землетрясения 05.04.2017 г. по глубине: вертикальные разрезы вдоль (а) и поперек (б) облака афтершоков; в –гистограмма распределения числа афтершоков по двухкилометровым интервалам глубин

1 – энергетические классы главного толчка (звездочка) и афтершоков; 2 - вероятная плоскость разрыва в очаге главного толчка; 3 –погружение облака афтершоков на юго-восток

Fig. 4. Distribution of aftershocks of the April 5, 2017 earthquake in depth: vertical sections along (a) and across (b) the aftershock cloud; c – histogram of the distribution of the number of aftershocks over two-kilometer depth intervals

Закон Омори. Временные зависимости числа и сейсмической энергии афтершоков с *К*_Р≥7.6 в радиусе 30 *км* от главного толчка, суммированных по 5-суточным интервалам, представлены на *рис. 5a*. Методом наименьших квадратов установлена билогарифмическая зависимость числа афтершоков от времени в сутках (*рис. 5 б*) с коэффициентом корреляции *R*=0.89:

$$\lg N = -1.176 \cdot \lg(t) + 2.68. \tag{1}$$

Параметр степени затухания афтершоков в уравнении (3), |p|=1.176, несколько выше

Рис. 5. Развитие афтершокового процесса: а) распределение по 5-суточным интервалам числа и сейсмической энергии афтершоков с *К*_Р≥7.6 в радиусе 30 км от главного толчка; б) билогарифмическая зависимость числа афтершоков от времени (в сутках)

Fig. 5. Development of the aftershock process: a) temporal distribution of the 5-day number and seismic energy of aftershocks with $K_R \ge 7.6$ within a radius of 30 km from the main shock; b) logarithmic dependence of the number of aftershocks on time (in days)

Пиковые скорости и ускорения грунта

По велосиграммам и акселерограммам главного толчка 05.04.2017 г., полученным аппаратурой типа GEOSIG на сейсмических станциях Туркменистана «Серахс» (Δ=104 км), «Каушут» (Δ=190 км), «Кушка» (Δ=190 км) и «Ашхабад» (Δ=289 км), оценены пиковые скорости и ускорения в указанных пунктах (*рис. 6*, *табл. 1*), а также интенсивности сотрясений, рассчитанные из них с использованием рекомендованных в [ГОСТ..., 2017] соотношений:

Инструментальные интенсивности

Таблица 1. Пиковые скорости (PGV) и ускорения (PGA) грунта при землетрясении 05.04.2017 г. на ближайших станциях Туркменистана и рассчитанные по ним интенсивности сотрясений *I*_{PGA}, *I*_{PGV}, *I*_{PGA·PGV}, *I*_{ШСИ-17} в пунктах расположения станций

Table 1. Peak velocities (PGV) and accelerations (PGA) of the 04/05/2017 earthquake at the nearest stations of Turkmenistan and calculated from them shaking intensities I_{PGA} , I_{PGV} , $I_{PGA \cdot PGV}$, $I_{SHSI-17}$ at the station locations

Станция, код	Δ,	Населенный	PGA,		PGV,			I _{PGA} ,	l _{PGV} ,	I _{PGA·PGV} ,	I _{шси-17} ,	
	КМ	пункт	см/с ²		см/с			балл	балл	балл	балл	
			N-S	E-W	Ζ	N-S	E-W	Ζ				
Cepaxc, SRH	104	п. Серахс	8.9	7.5	6.7	0.90	0.89	0.85	4.3	4.6	4.0	4.3
Кушка, KSK	190	г. Серхетабад	21.0	18.0	6.8	0.85	0.75	0.42	5.2	4.6	4.5	4.8
Каушут, KST	190	с. Каушут	5.4	5.4	2.8	0.25	0.06	0.09	3.7	3.5	3.0	3.4
Ашхабад,АS2	289	г. Ашхабад	2.4	1.4	0.74	0.26	0.26	0.15	2.8	3.5	2.6	3.0

МАКРОСЕЙСМИЧЕСКИЕ ДАННЫЕ

В Туркменистане оценки макросейсмических проявлений землетрясения 05.04.2017 г. получены по сообщениям заведующих сейсмических станций: «Серахс», «Кушка» (г. Серхетабад) – 3 балла; «Ашхабад» (289 км) – 2–3 балла по шкале MSK-64. Больше данных, полученных с помощью Интернет-анкет, опубликовано на сайте Геологической службы США (USGS) в разделе DYFI, где балльность приводится по шкале MM. Отзывы об интенсивности сотрясений для каждого населенного пункта, представленного на сайте DYFI USGS, сгруппированы в «сообщества», т.е. каждая оценка балльности в населенном пункте является не индивидуальным наблюдением, а средней мерой последствий землетрясения в определенной области.

Для общих по этим источникам пунктов, а также для пунктов, где имелись инструментальные и макросейсмические интенсивности, данные были уточнены (*табл. 2*) – итоговое значение интенсивности в населенном пункте получено как среднее значение из оценок USGC (*I*_{MM}) и сведений из Туркменистана, макросейсмических (*I*_{MSK-64}) и инструментальных из *табл. 1* (*I*_{ШСИ-17}).

Таблица 2. Уточнение интенсивностей сотрясений в населенных пунктах Туркменистана

Населенный	Δ,	I _{МSK-64} ,	I _{мм} ,	I _{шси-17} ,	I _{ср} , балл
пункт	КМ	балл	балл	балл	
п. Серахс	104	3	5	4.3	4.1
г. Кушка	190	3	_	4.8	3.9
г. Ашхабад	289	2.5	3	3.0	2.9

Table 2. Refinement of shaking intensities in settlements of Turkmenistan

МАКРОСЕЙСМИЧЕСКОЕ ПОЛЕ

На *рис.* 7 представлена карта макросейсмических проявлений землетрясения 05.04.2017 г. Данные аппроксимированы изолиниями равной балльности, при проведении которых принималась во внимание надежность оценок (число отзывов). На рисунке четко прослеживается вытянутость изосейст в северо-западном направлении, совпадающем с ориентацией тектонических структур. Отмечается слабое затухание интенсивности вдоль структур и сильное в поперечном направлении.

Рис. 7. Карта изосейст землетрясения 05.04.2017 г.

1 – интенсивность сотрясений в баллах;

2 – инструментальный эпицентр главного толчка;

3 – изосейста;

4 – активный разлом [Бачманов и др., 2017]; 5

- государственная граница

Fig. 7. Isoseist map of the earthquake on April 5, 2017.

1 – shaking intensity; 2 – instrumental epicenter;

3 - isoseist; 4 – active fault ;

5 - state boundary

Уравнение макросейсмического поля

Важным элементом прогнозирования сейсмической опасности в регионе является региональное уравнение макросейсмического поля (зависимость интенсивности сотрясений *I*_i в конкретном пункте от магнитуды *M* и гипоцентрального расстояния *r*). При недостатке данных для установления такой зависимости в странах бывшего СССР обычно используется уравнение Блейка-Шебалина со среднемировыми коэффициентами [ГОСТ...2017]:

$$I = 1.5 M - 3.5 \lg(r) + 3.0,$$
 (5)

где *I* – интенсивность в населенных пунктах, *r* – гипоцентральное расстояние в *км*.

Для региона «Западная Туркмения», который включает территории Туркменистана и Северного Ирана до 60° в.д., охватывая только западную половину показанной на рис. 7 территории, в [ГОСТ...2017] рекомендуется следующее соотношение:

$$I = 1.5 M - 3.8 \lg(r) + 3.5.$$
(6)

Уравнение макросейсмического поля землетрясения 05.04.2017 г. установлено нами методом наименьших квадратов для всех отзывов с учетом их числа (рис. 8), а свободный член получен для магнитуды $M=Ms_{MOS}=5.8$, которая позволяет согласовать по уровню уравнения (5), (6) и (7): $I = 1.5 M - 3.35(\pm 0.19) \log(r) + 2.68(\pm 0.38), R=0.75,$ (7)

где *R* – коэффициент корреляции.

Из ур. (5), (6) и (7) оценена интенсивность в эпицентре землетрясения 05.04.2017 г. при *M=Ms*_{MOS}=5.8 и *h*=12 *км: I*₀=7.9 из (5), *I*₀=8.1 из (6) и *I*₀=7.8 из (7). Окончательная оценка - *I*₀=8 баллов.

Рис. 8. Зависимость макросейсмических эффектов землетрясения 05.04.2017 г. от гипоцентрального расстояния *г*.

Для каждого значения интенсивности в населенном пункте (кружок) указано число отзывов. Черная линия – установленное нами уравнение (7), красная – уравнение (5) Блейка-Шебалина со среднемировыми коэффициентами; синяя – уравнение (6) для Западной Туркмении

ЗАКЛЮЧЕНИЕ

1. Установлено, что землетрясение 5 апреля 2017 г. с *Мw*_{GCMT}=6.0, произошедшее на юговосточном окончании Копетдага, вблизи иранского селения Сефид-Санг, явилось самым крупным в радиусе 45 *км* от эпицентра за всю сейсмическую историю региона.

2. По 3D-ориентации облака афтершоков, направлению миграции максимального афтершока, простиранию ближайшего разлома и одной из нодальных плоскостей механизма очага определены северо-западная ориентация плоскости разрыва в очаге землетрясения 05.04.2017 г., ее длина *L*=30 км и ширина *W*=11.7 км.

3. Установлен закон Омори для афтешоков (lg N= –1.176·lg(t) + 2.68), согласно которому затухание афтершокового процесса происходило быстрее, чем среднемировое с |p|=1.

4. По совокупности макросейсмических и инструментальных данных уточнены интенсивности сотрясений в ближайших к очагу населенных пунктах Туркменистана. Построена карта изосейст, показавшая значительную анизотропию затухания интенсивности сотрясений вдоль и в крест тектонических структур северо-западного простирания.

5. Для области радиусом 300 км от эпицентра главного толчка установлено уравнение макросейсмического поля, близкое к уравнению Блейка-Шебалина со среднемировыми коэффициентами, которое рекомендуется для прогноза сейсмических воздействий в баллах для этого района. Согласно обоим уравнениям, интенсивность сотрясений в эпицентре оценивается в I_0 =8 баллов.

СПАСИБО ЗА ВНИМАНИЕ! СПАСИБО ЗА ВНИМАНИЕ!