Neutrino Properties on the Basis of Neutrinoless Double Beta Decay

Alexander A. Klimenko

DLNP of JINR, February 24, 2021

(A,Z) -> (A,Z+2) + 2 e⁻ + {2**∨**}

NDBDecayers

The following known nuclides with $A \le 260$ are theoretically capable of double beta decay, where the red color is the isotopes in which the double beta rate has been measured experimentally, and the black color has yet to be measured experimentally:

⁴⁶Ca, ⁴⁸Ca, ⁷⁰Zn, ⁷⁶Ge, ⁸⁰Se, ⁸²Se, ⁸⁶Kr, ⁹⁴Zr, ⁹⁶Zr, ⁹⁸Mo, ¹⁰⁰Mo, ¹⁰⁴Ru, ¹¹⁰Pd,
 ¹¹⁴Cd, ¹¹⁶Cd, ¹²²Sn, ¹²⁴Sn, ¹²⁸Te, ¹³⁰Te, ¹³⁴Xe, ¹³⁶Xe, ¹⁴²Ce, ¹⁴⁶Nd, ¹⁴⁸Nd,
 ¹⁵⁰Nd, ¹⁵⁴Sm, ¹⁶⁰Gd, ¹⁷⁰Er, ¹⁷⁶Yb, ¹⁸⁶W, ¹⁹²Os, ¹⁹⁸Pt, ²⁰⁴Hg, ²¹⁶Po, ²²⁰Rn,
 ²²²Rn, ²²⁶Ra, ²³²Th, ²³⁸U, ²⁴⁴Pu, ²⁴⁸Cm, ²⁵⁴Cf, ²⁵⁶Cf, ²⁶⁰Fm

ECEC

The following known nuclides with $A \le 260$ are theoretically capable of double electron capture, where the red color is the isotopes for which the double electron capture rate has been measured, and the black color has not yet been measured experimentally:

³⁶<u>Ar</u>, ⁴⁰Ca, ⁵⁰Cr, ⁵⁴Fe, ⁵⁸Ni, ⁶⁴Zn, ⁷⁴Se, ⁷⁸Kr, ⁸⁴Sr, ⁹²Mo, ⁹⁶Ru, ¹⁰²Pd, ¹⁰⁶<u>Cd</u>, ¹⁰⁸Cd, ¹¹²Sn, ¹²⁰Te, ¹²⁴Xe, ¹²⁶Xe, ¹³⁰Ba, ¹³²Ba, ¹³⁶Ce, ¹³⁸Ce, ¹⁴⁴Sm, ¹⁴⁸Gd, ¹⁵⁰Gd, ¹⁵²Gd, ¹⁵⁴Dy, ¹⁵⁶Dy, ¹⁵⁸Dy, ¹⁶²Er, ¹⁶⁴Er, ¹⁶⁸Yb, ¹⁷⁴Hf, ¹⁸⁰W, ¹⁸⁴Os, ¹⁹⁰Pt, ¹⁹⁶Hg, ²¹²Rn, ²¹⁴Rn, ²¹⁸Ra, ²²⁴Th, ²³⁰U, ²³⁶Pu, ²⁴²Cm, ²⁵²Fm, ²⁵⁸No

Standard mechanism for $0\nu 2\beta$

Effects of a quenched gA on NMEs of 0 decays:

$$\left[T_{1/2}^{(0\nu)}\right]^{-1} = (g_{A,0\nu})^4 G^{(0\nu)} \left|M^{(0\nu)}\right|^2 \left(\frac{\langle m_\nu \rangle}{m_e}\right)^2$$

$$M^{(0\nu)} = M^{(0\nu)}_{\rm GT} - \left(\frac{g_{\rm V}}{g_{\rm A,0\nu}}\right)^2 M^{(0\nu)}_{\rm F} + M^{(0\nu)}_{\rm T}$$

+ isospin

Jouni Suhonen (JYFL, Finland)

restoration + data on $2\nu\beta\beta$)

Example: $0\nu\beta\beta$ NMEs of ⁷⁶Ge, effect on the half-life

0.5

NEUTRINO2018 30 / 33

· Jiao et al. (triaxial

Jiao et al. (axial)

` Menendez et al.

Senkov et al.

Barea et al.

Suhonen

 $g_{\rm A}$

1.0

Neutrino Mass Ordering From Oscillations and Beyond: 2018 Status and Future Prospects

Pablo F. de Salas, Stefano Gariazzo, Olga Mena*, Christoph A. Ternes and Mariam Tórtola

Frontiers in Astronomy and Space Sciences | October 2018 | Volume 5 | Article 36 / published: 09 October 2018 doi: 10.3389/fspas.2018.00036

Global fit: the Bayesian analysis to the 2018 publicly available oscillation and cosmological data sets provides strong evidence for the normal neutrino mass ordering vs. the inverted scenario, with a significance of 3.5 standard deviations.

In order to exclude the inverted ordering allowed range for 10^{10} (in case there is no sterile neutrino), one would need to constrain 10^{10} (in case ~10 meV, which corresponds to $1/2 \approx 1 \times 10^{28}$ year, with some dependence on the material (phase space and NME). This means that none of the current generation experiments will be able to reach the required sensitivity, and we will have to wait for next generation upgrades and new projects.

Present

Future

&

13

Основная цель эксперимента GERDA (GERmanium Detector Array) поиск 0vββ-распада ⁷⁶Ge. GERDA достигла беспрецедентно низкого фонового индекса 5.10-4 отсчетов / (кэВ. кг.год) в области искомого сигнала за счет использования открытых германиевых детекторов из обогащенного ⁷⁶Ge в активной защите из жидкого аргона. За общую экспозицию 127,2 кг.лет искомый сигнал не наблюдается и установлен новый предел на период полураспада **0v**ββ для ⁷⁶Ge: T_{1/2} > **1,8**·10²⁶ лет. Отличные характеристики, достигнутые в GERDA, проложили путь к эксперименту следующего поколения, подготовленному коллаборацией LEGEND. Эксперимент LEGEND нацелен на увеличение чувствительности по T_{1/2} (0vββ) до 10²⁸ лет, или по массе легкого электронного майорановского нейтрино до m_{ββ} < 17 мэВ. На первом этапе LEGEND-200 используется имеющаяся инфраструктура GERDA в лаборатории LNGS (Италия). Начало набора данных с 200 кг ⁷⁶Ge намечено на 2021 г.

Несмотря на то, что поиск 0vββ распада ⁷⁶Ge на основной уровень дочернего ядра ⁷⁶Se является на данный момент главной и наиболее амбициозной целью GERDA и LEGEND, широкий спектр других ββ-мод и механизмов, а также ряд редких процессов, был, есть и будет исследоваться в рамках GERDA и LEGEND, обещая много новых важных результатов.

моды ββ-распада и поиск других редких процессов в GERDA (... и LEGEND)

N	Process	Isotope	Exposure in Phase I T _{1/2} (limit)	Exposure in Phase I+II T _{1/2} (limit) T _{1/2} (sensitivity)	Final Exposure in GERDA (I+II) T _{1/2} (limit) T _{1/2} (sensitivity)	~Exposure in LEGEND-200 ~T _{1/2} (sensitivity)
1	0∨ββ _{lmn,} 0⁺ _{0.s.} → 0⁺ _{0.s}	Ge-76	21.6 kg×yr > 2.1 ⋅10 ²⁵ yr	82.4 kg-yr > 0.9 ⋅10 ²⁶ yr > 1.1 ⋅10 ²⁶ yr	127.2 kg⋅yr > 1.8 ⋅10 ²⁶ yr S ~ 1.8 ⋅10 ²⁶ yr	200 kg x 5 yr S ~ 1 ⋅10 ²⁷ yr
2	2νββ 0⁺ _{g.s.} → 0⁺ _{g.s}	Ge-76	17.9 kg⋅yr = (1.926 ± 0.094) ∴10 ²¹ yr	-	= (1.9 ± 0.03) ·10 ²¹ yr	= (1.9 ± 0.01) ·10 ²¹ yr
3 3a 3b 3c	$2\nu\beta\beta$ $0^{+}g.s. \rightarrow 2^{+}1$ $0^{+}g.s. \rightarrow 0^{+}1$ $0^{+}g.s. \rightarrow 2^{+}2$	Ge-76	22.3 kg·yr > 1.6 ·10 ²³ yr > 3.7 ·10 ²³ yr > 2.3 ·10 ²³ yr	> 5.3 ⋅10 ²³ yr > 3.3 ⋅10 ²³ yr > 2.7 ⋅10 ²³ yr	S ~1.2 ⋅10 ²⁴ yr S ~1.1 ⋅10 ²⁴ yr	- +
4 4a 4b 4c	0νββ0+g.s.→ 2+10+g.s.→ 0+10+g.s.→ 2+2	Ge-76		> 5.5 x10 ²⁴ yr > 1.9 x10 ²⁵ yr	S ~ 8 x10 ²⁴ yr S ~ 3 x10 ²⁵ yr	- +
5 5a 5b 5c 5d	0vββχ. n = 1 n = 2 n = 3 n = 7	Ge-76	20.3 kg·yr > 4.2·10 ²³ yr > 1.8·10 ²³ yr > 0.8·10 ²³ yr > 0.3·10 ²³ yr	30.8kg·yr (BEGe) > 1·10 ²⁴ yr > 4·10 ²³ yr > 2·10 ²³ yr > 0.7·10 ²³ yr	S ~ 2·10 ²⁴ yr S ~ 8·10 ²³ yr S ~ 5·10 ²³ yr S ~ 2·10 ²³ yr	++
6	0vββLV	Ge-76		30.8kg·yr (BEGe) > 1.0·10²⁴ yr	S ~ 2·10²⁴ yr	++

All at 90% C.L.

Standard ββ Non-standard ββ 0vββ_{LMN} - light Majorana neutrino mechanism

Other processes

Продолжение Таблицы

N	Process	lsotop e	Exposure in Phase I T _{1/2} (limit) T _{1/2} (sensitivity)	Exposure in Phase I+II T _{1/2} (limit) T _{1/2} (sensitivity)	Final Exposure in GERDA (I+ II) T _{1/2} (limit) T _{1/2} (sensitivity)	~Exposure in LEGEND-200 ~T _{1/2} (sensitivity)
7	0vECEC	³⁶ Ar	> 3.6 ·10 ²¹ yr	-	S ~ 1 ·10 ²² yr	+ ++
8 8a 8b 8c 8d	Tri-nucleon decay ppp → ppn → pnn → nnn →	Ge-76	-	> 7.1.10 ²⁵ yr > 7.4.10 ²⁵ yr > 7.7.10 ²⁵ yr > 7.7.10 ²⁵ yr > 3.4.10 ²⁵ yr	> 2.29·10 ²⁶ yr > 2.33·10 ²⁶ yr > 2.44·10 ²⁶ yr > 1.42·10 ²⁶ yr	+ ++
9 9a 9b	Super- WIMPs axion-like dark photons	Ge-76	-	at M =150 keV/c ² g _{ae} < 3 x10 ⁻¹² α'/α < 6.5 x10 ⁻²⁴	-	++
10	Others					++

All at 90% C.L.

For more details see: *A.A.Smolnikov*, GERDA Searches for 0vββ and other ββ Decay Modes of 76Ge, AIP Conference Proceedings, 2165, 020024, 1-4, 2019

Final Results of GERDA on the Search for $0\nu\beta\beta$ decay of 76Ge

Phase I and Phase II data together give a total exposure of **127.2 kg yr**, which corresponds to **1288 mol yr of 76Ge**. The combined analysis has a best fit for null signal strength, and provides a half-life limit of

 $T_{1/2} > 1.8 \times 10^{26}$ yr at 90% C.L.

arXiv:2009.06079v1 [nucl-ex] 13 Sep 2020 submitted to PRL

 $0\nu\beta\beta$ with liquid scintillators

KamLAND-Zen

SNO+ D=12 m Te-130 = 0.5% in LSTe

Figure 3: Energy spectrum of $0\nu\beta\beta$ signal (red) and background[6] Region of interest: 2.49 - 2.65 MeV

Figure 4: Background counts within ROI in first year of data taking[6] Total counts: 12.4

single Coax / BEGe / electrons [blue/red/green] ⁷⁶Ge(v,e⁻)⁷⁶As

Macro Bolometer Technique

• The absorbed energy causes an increase in absorber temperature

CUORE

• Use temperature change to measure energy absorbed

- For dielectric crystal absorbers, heat capacity $\sim T^3$
- Typically operated at ~10mK

 $0\nu\beta\beta$ with bolometers

• Relative energy resolution of 0.2~0.3% FWHM routinely achieved

$0\nu\beta\beta$ with bolometers CUORE

CUORE Cryogenic Underground Observatory for Rare Events

19 towers in total

- Hosted at Gran Sasso Underground Lab
- Close-packed array of 988 ^{nat}TeO₂ bolometers (Total active mass: 742 kg)
- Operated at T~11 mK
- Primary physics goal: $0\nu\beta\beta$ decay of ¹³⁰Te
 - ► Isotopic abundance 34% => 206 kg
 - ► Q-value: 2527.5 keV
- CUORE design goals:
 - Energy resolution: 5 keV FWHM near Q_{ββ}
 - Background: 0.01 c/keV/kg/y near Q_{ββ}
 - $0\nu\beta\beta$ sensitivity for 5 years of livetime:

 $T_{1/2}^{0\nu} = 9 \times 10^{25} yr$

CUORE $0\nu\beta\beta$ with bolometers

How to reach the few meV scale

80 000 bolometers of TeO₂ (natural isotopic composition)

20 dilution refrigerators with experimental space 4 x wrt CUORE can be hosted by an LNGS hall

Mass of each crystal: 1.3 kg (6×6×6 cm)

Efficiency: 90%

Energy resolution: 5 keV FHWM

Already achieved

Background index: b = 10⁻⁵ counts/(keV kg y) (testable in CUPID)

Live time: 10 y 90% sensitivity: T_{1/2} > 7 × 10²⁸ y m_{ee} < 1.6 – 7.5 meV

Sensitivity

The reach of an experiment is typically characterized through

limit setting sensitivity:

"limit on signal strength expected assuming no signal"

signal discovery sensitivity:

"minimal signal strength for which a discovery is expected"

At the background level of next-gen experiments:

- Different sensitivity definitions

 different numbers
- Iimit setting sensitivity has pathological behaviours

We search for a signal... let's focus on the discovery sensitivity

Table 1. Comparison of present and prior experiments. Lower half-life limits $L(T_{1/2})$ and sensitivities $S(T_{1/2})$, both at 90% C.L., reported by recent $0\nu\beta\beta$ decay searches with indicated deployed isotope masses M_i and FWHM energy resolutions. Sensitivities $S(T_{1/2})$ have been converted into upper limits of effective Majorana masses $m_{\beta\beta}$ using the nuclear matrix elements quoted in (20).

AgAgostini et al., Science 365 , 1445-1448 (2019) 27 Septembre 2019								
Experiment	Isotope	M _i (kmol)	FWHM (keV)	$L(T_{1/2})$ (10 ²⁵ years)	S(T _{1/2}) (10 ²⁵ yea	rs) m _{ββ} (meV)		
GERDA (this work)	⁷⁶ Ge	0.41	3.3	9	11	104 to 228		
MAJORANA (27)	⁷⁶ Ge	0.34	2.5	2.7	4.8	157 to 346		
CUPID-0 (28)	⁸² Se	0.063	23	0.24	0.23	394 to 810		
CUORE (29)	¹³⁰ Te	1.59	7.4	1.5	0.7	162 to 757		
EXO-200 (30)	¹³⁶ Xe	1.04	71	1.8	3.7	93 to 287		
KamLAND-Zen (21)	¹³⁶ Xe	2.52	270	10.7	5.6	76 to 234		
Combined						66 to 155		
EXPERIMENTS	ISOT	ΟΡΕ	M, kmol	FWHM, keV	S(T _{1/2}), Yyr	m _{ββ} , mev		
LEGEND	Ge	-76	2.29	2.9	1100	32.9 – 72.1		
GERDA	Ge-76		0.41	3.3	180	81.3 – 178.2		
CUORE	Te-:	130	1.59	7.0	90	44.8 - 210.9		
KamLAND Zen-800 Xe-136		136	4.98	270	500	25.4 – 78.2		
KLNDZen-400	Xe-	136	2.52	270	56	76 - 234		
COMBINED						23.4 - 51.3		

GERDA SENSITIVITY CALCULATIONS

It was used BAT-0.9.4. mtf model: apriori ,Gauss,flat,1/sqrt(S).

- Two channels: Phasel + Phasell
- Phasel 61 EVENTS; FWHM = 4.13 keV
- PHASEII 13 EVENTS; FWHM = 3.29 keV
- 5 channels: Golden+Silver+BEGe+Phasel+
 + Phasell

(47+9) EVENTS / 4.26 keV 3 EVENTS / 2.73 2 EVENTS / 4.16 keV

BAT SENSITIVITY

- Poissons in the energy interval 260 keV with line
- y = 1.417 5.742e-4*E
- 0) Systematics E, FWHM, Eff
- •A) full region [1930,2190] keV
- •B) with exclusion of effect region [2037,2041] keV
- •C) statistics 5000 FITS GERDA final – per ALL detectors were made 408 partitions, i.e. time intervals with stable resolution and efficiency. SENSITIVITY = 180 Yyr.

Blue - 2 channels Red-5 channels N = 5000 BAT N_{exl} distribution

2/24/2021

34

Summary

The combined analysis of sensitivities of current searching for the 0v $\beta\beta$ decay experiments in active phase and some finished ones gives us for $\langle m_{\beta\beta} \rangle$ restriction in range 23.4 – 51.3 meV.

GERDA BI is 2 counts / FWHM / t*yr Sensitivity - 1.8x10²⁶ yr.

BACKUP SLIDES

The sensitivity

sensitivity F: lifetime corresponding to the minimum detectable number of events over background at a given confidence level

