
КАРБОНОВЫЕ КИСЛОТЫ-

органические соединения, содержащие в своем составе одну или несколько карбоксильных групп.

Общая формула карбоновых кислот

C_nH_{2n}O₂

Общая формула предельных карбоновых кислот

14n + 32

Формула для расчета молекулярной массы предельных карбоновых кислот

КЛАССИФИКАЦИЯ КАРБОНОВЫХ КИСЛОТ

ОДНООСНОВНЫЕ

- МЕТАНОВАЯ КИСЛОТА
- ЭТАНОВАЯ КИСЛОТА
- БУТАНОВАЯ КИСЛОТА

R - COOH

МНОГООСНОВНЫЕ

- ЩАВЕЛЕВАЯ КИСЛОТА
- ЛИМОННАЯ КИСЛОТА
- ЯНТАРНАЯ КИСЛОТА

HOOC - R - COOH

ПО КОЛИЧЕСТВУ КАРБОКСИЛЬНЫХ ГРУПП

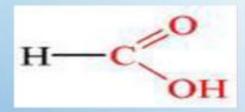
КЛАССИФИКАЦИЯ КАРБОНОВЫХ КИСЛОТ

ПРЕДЕЛЬНЫЕ

МЕТАНОВАЯ КИСЛОТА ЭТАНОВАЯ КИСЛОТА БУТАНОВАЯ КИСЛОТА

НЕПРЕДЕЛЬНЫЕ

ОЛЕИНОВАЯ КИСЛОТА ЛИНОЛЕВАЯ КИСЛОТА ЛИНОЛЕНОВАЯ КИСЛОТА


АРОМАТИЧЕСКИЕ

БЕНЗОЙНАЯ КИСЛОТА

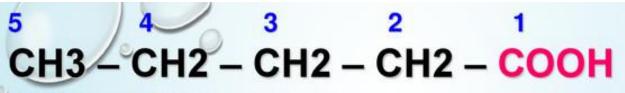
ПО СТРОЕНИЮ УГЛЕРОДНОГО СКЕЛЕТА

НОМЕНКЛАТУРА КАРБОНОВЫХ КИСЛОТ

МЕТАНОВАЯ КИСЛОТА

(МУРАВЬИНАЯ КИСЛОТА)

ЭТАНОВАЯ КИСЛОТА


(УКСУСНАЯ КИСЛОТА)

4 3 2 1 CH3 – CH2 – CH2 - COOH

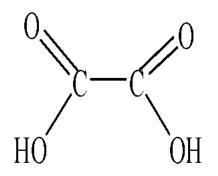
БУТАН**ОВАЯ** КИСЛОТА

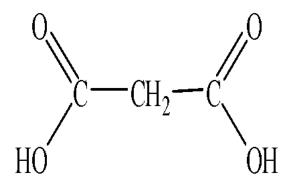
(МАСЛЯНАЯ КИСЛОТА)

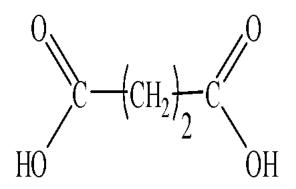
ПЕНТАНОВАЯ КИСЛОТА

(ВАЛЕРИАНОВАЯ КИСЛОТА)

Property of the contract of th


ЭТАНДИОВАЯ КИСЛОТА


(ЩАВЕЛЕВАЯ КИСЛОТА)


ГОМОЛОГИЧЕСКИЙ РЯД КАРБОНОВЫХ КИСЛОТ

Химическая формула	Систематическое название кислоты	Тривиальное название кислоты	Название кислотного остатка
HCOOH	Метановая	Муравьиная	Формиат
СНЗСООН	Этановая	Уксусная	Ацетат
СН3СН2СООН	Пропановая	Пропионовая	Пропионат
CH3CH2CH2COOH	Бутановая	Масляная	Бутират
СН3СН2СН2СООН	Пентановая	Валериановая	валеринат
СН3-(СН2)4-СООН	Гексановая	Капроновая	капронат
CH3-(CH2)8 – COOH	Декановая	каприновая	капринат
CH3-(CH2)14 - COOH	Гексадекановая	Пальмитиновая	пальмитат
СН3-(СН2)16- СООН	Октадекановая	Стеариновая	стеарат

Дикарбоновые кислоты

Щавелевая кислота, Соли оксалаты Малоновая кислота, Соли малонаты

Янтарная кислота, Соли сукцинаты

$$C \longrightarrow C \longrightarrow C \longrightarrow C$$

HO

OH

Глутаровая кислота, соли глутараты

кислота, соли фумараты

Алгоритм названия карбоновых кислот:

- 1. Находим главную цепь атомов углерода и нумеруем её, начиная с карбоксильной группы.
- 2. Указываем положение заместителей и их название (названия).
- 3. После корня, указывающего число атомов углерода в цепи, идет суффикс «-овая» кислота.
- 4. Если карбоксильных групп несколько, то перед «овая» ставится числительное (-ди, - три...)

Пример:

3- метилбутан + -овая = 3-метилбутановая кислота

Алгоритм записи формул карбоновых кислот

- 1. Выделить корень слова на основании, которого записать углеродный скелет в состав, которого входит карбоксильная группа.
- Нумеруем атомы углерода, начиная с карбоксильной группы.
- 3. Указываем заместители согласно нумерации.
- 4. Необходимо дописать недостающие атомы водорода (углерод четырёхвалентен).
- 5. Проверить правильность записи формулы.

ФИЗИЧЕСКИЕ СВОЙСТВА

С1 — С3 Жидкости с характерным резким запахом, хорошо растворимые в воде

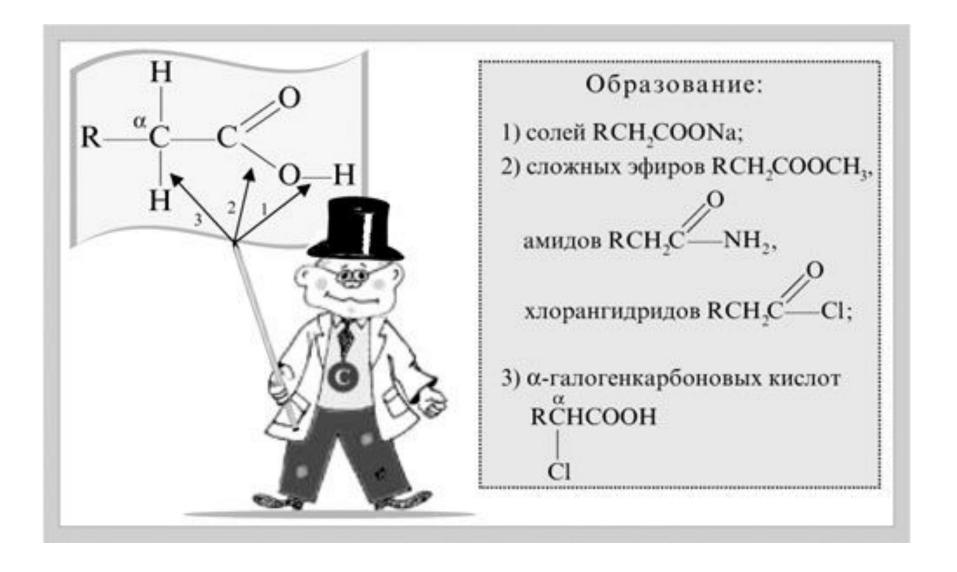
C4 - C9

Вязкие маслянистые жидкости с неприятным запахом, плохо растворимые в воде

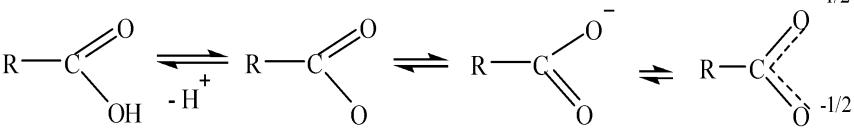
C₁₀ и более

Твердые вещества, не имеющие запаха, не растворимые в воде

Строение карбоксильной


- Электронная плотность в карбонильной группе (особенно σ-связи) смещена в сторону кислорода, как более электроотрицательного элемента. Вследствие этого карбонильный атом углерода приобретает частичный положительный заряд. Чтобы его компенсировать, он притягивает к себе электроны атома кислорода гидроксильной группы. Электронная плотность на атоме кислорода понижается и он смещает в свою сторону электронную плотность связи О Н. Полярность связи в гидроксогруппе возрастает, водород становится подвижнее и легче отщепляется в виде протона, что обуславливает общие свойства карбоновых кислот.
- Влияние радикала на карбоксильную группу объясняется сдвигом электронной плотности к центральному атому углерода. В результате его частичный положительный заряд уменьшается и его действие на электронную плотность атома кислорода –ОН- группы ослабляется, а, значит, отщепление ионов водорода затрудняется. Как следствие самая сильная-муравьиная кислота.
- Карбоксильная группа влияет на радикал таким образом, что наиболее легко замещаемым становится водород при α-углеродном атоме.

Среди кислот отсутствуют газообразные вещества, это связано с ассоциацией молекул посредством водородных связей.


Образованием водородных связей можно объяснить и растворимость карбоновых кислот в воде.

$$R-C$$
 $O \cdot \cdot \cdot HO$
 $C-R$
 $O \cdot \cdot \cdot O$

Реакционные центры:

Кислотность карбоновых кислот

В радикале кислоты электронодонорные заместители уменьшают кислотные свойства, а электроноакцепторные заместители увеличивают кислотные свойства.

_Н

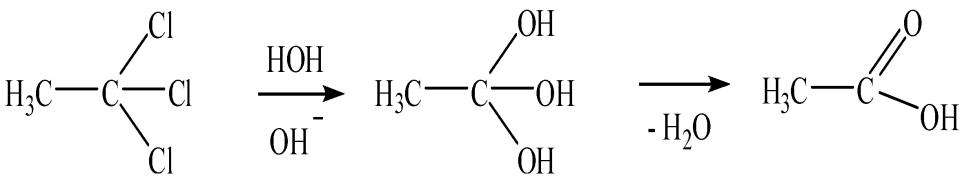
$$H - \overset{H}{\overset{}{\overset{}{\text{C}}}} - \overset{H}{\overset{}{\text{C}}} \overset{O}{\overset{}{\text{OH}}} + \overset{C}{\text{Cl}}_2 \longrightarrow \overset{H}{\overset{}{\text{Cl}}} - \overset{H}{\overset{}{\text{C}}} \overset{O}{\overset{}{\text{O}}} + \overset{H}{\text{HCl}}$$

уксусная кислота

хлоруксусная кислота

Хлоруксусная кислота сильнее уксусной, так как за счет атома хлора происходит перераспределение электронной плотности в молекуле и водород в виде протона отщепляется легче, а, значит, кислота будет более активной.

-1/2


Увеличение длины углеводородного радикала приводит к уменьшению силы карбоновых кислот

Ряд изменения кислотности

HOOOH > H—COOH >
$$H_3C$$
—COOH > H_3C —COOH

Способы получения карбоновых кислот

1. Реакции гидролиза тригалогенопроизводных

2. Гидролиз нитрилов

$$H_3C$$
— C $=$ N $+$ H_3C — C OH $-H_2O$ $+$ NH_4^+ NH_4^+

Предельные карбоновые кислоты получают окислением:

1. спиртов

$$R-C - H + 2[O] \longrightarrow R-C O + H_2O$$

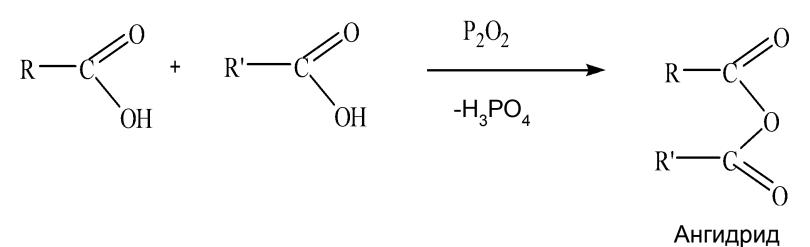
2. альдегидов

3. углеводородов

$$CH_3-CH_2$$
 \longleftrightarrow CH_3-CH_3 \longrightarrow $2CH_3-C$ \longleftrightarrow OH

Химические свойства

1. Образование солей
$$CH_3-C-OH+HO-Na \longrightarrow CH_3-C-O-Na+H_2O$$
 уксусная кислота ацетат натрия


$$CH_{3}-C \stackrel{O}{\stackrel{O}{=}} H + CO_{3} - Ca \longrightarrow CH_{3}-C \stackrel{O}{\stackrel{O}{=}} Ca + H_{2}O + Co_{2}$$

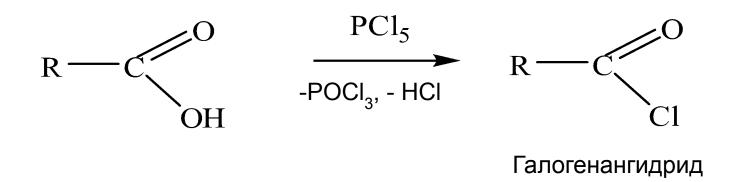
$$CH_{3}-C \stackrel{O}{\stackrel{O}{=}} C + Ca \longrightarrow CH_{3}-C \stackrel{O}{\stackrel{O}{=}} Ca + H_{2}O + Co_{2}$$

уксусная кислота

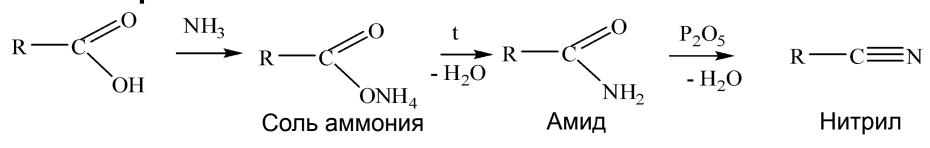
ацетат кальция

2. Образование ангидридов кислот

3. Образование сложных эфиров


$$R \longrightarrow C \longrightarrow R'OH, H \longrightarrow R \longrightarrow C \longrightarrow C$$

$$OH \longrightarrow R'OH, H \longrightarrow C \longrightarrow C$$


$$OR'$$

Сложный эфир

4. Образование хлорангидридов

5. Образование амидов и 6. нитрилов

