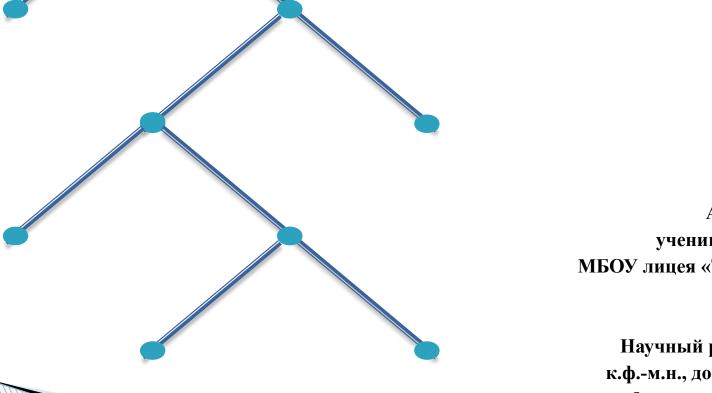
Плоские деревья и числа Каталана



Автор работы: ученик 8 «Б» класса МБОУ лицея «Технический» Баев Даниил

Научный руководитель: к.ф.-м.н., доцент кафедры алгебры и геометрии СГАУ Игнатьев Михаил Викторович

Числа Каталана

 C_n – это число правильных расстановок и пар скобок.

Пример:

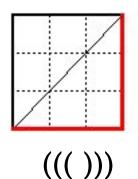
$$\begin{split} &C_0 = 1 \\ &C_1 = 1 \quad (\) \\ &C_2 = 2 \quad ((\)) \quad (\)(\) \\ &C_3 = 5 \quad (((\))) \quad (\)(\) \quad (\)((\)) \quad ((\))(\)) \end{split}$$

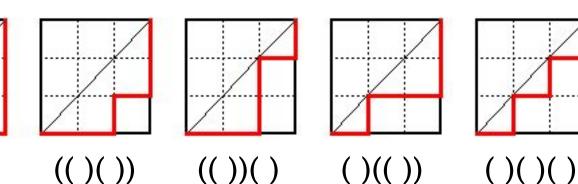
Пути в квадрате

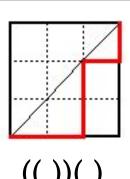
$$C_3 = 5$$
Число путей = C_n

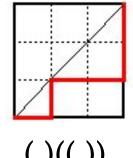
$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

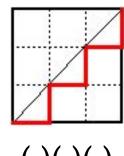
Смещение на 1 клетку вправо	(
Смещение на 1 клетку вверх)







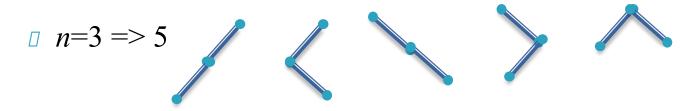




Деревья на плоскости

- □ Дерево связный граф без циклов
- ☐ Двоичное дерево это такое дерево, у каждой вершины которого не более двух потомков
- □ Пример:
- n=0, где n=0, где n=0 (пустое дерево)
- n=1 => 1 дерево

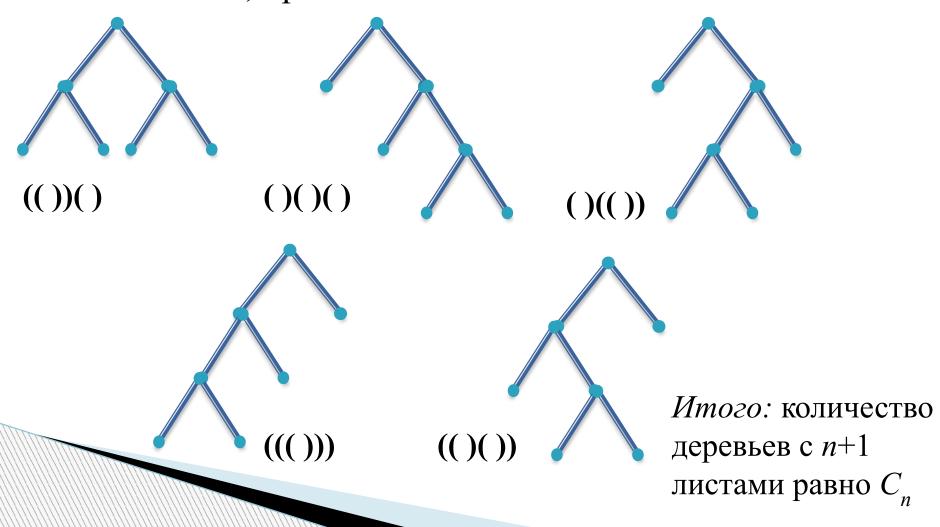
$$n=2 => 2$$



Двоичные деревья

Строго двоичные деревья

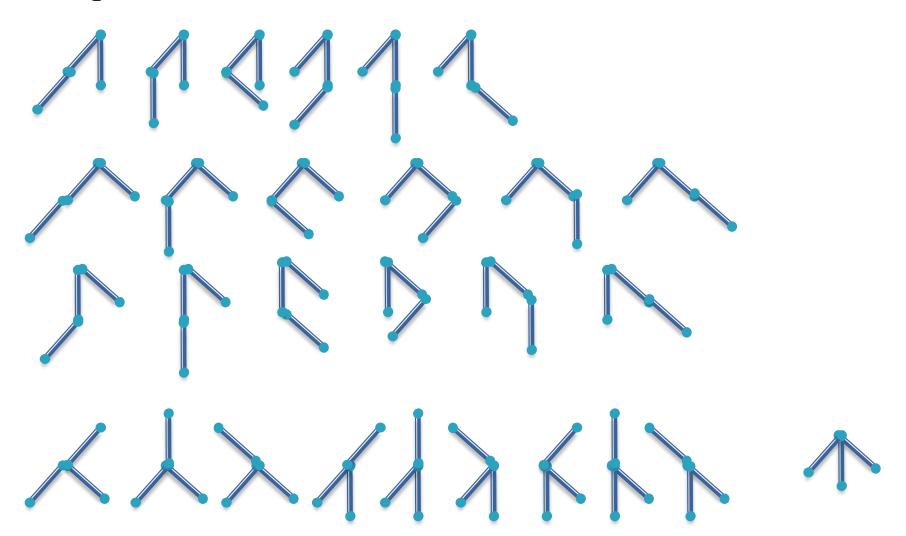
Посчитать количество строго двоичных деревьев с n+1 листами, при n=3



Сколько существует троичных деревьев с п вершинами?

Сколько существует троичных деревьев с п вершинами?

Сколько существует троичных деревьев с п вершинами?



T_n – всего троичных деревьев с п вершинами.

	1	2	3	4
n				
T _n	1	3	12	55

Числа Фусса-Каталана

$$c_n(p, r) = \frac{n}{np+r} {np+r \choose n}$$

Пример:

$$c_n(2, 1) = \frac{1}{2n+1} {2p+1 \choose n} = c_{n+1} {2p \choose n}$$

Теорема:
$$T_n = c_n(3, 1) = \frac{1}{3n+1} {3n+1 \choose n}$$

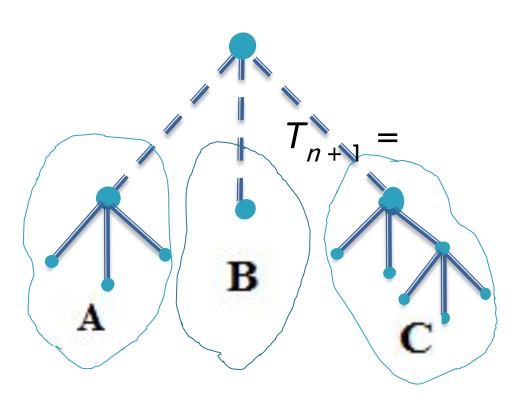
Доказательство теоремы

$$t_n = c_n(3, 1)$$

$$t_{n+1} = \sum_{a+b+c=n} t_a t_b t_c = 1$$

$$T_{n+1} = \sum_{a+b+c=n} t_a t_b t_{c_1} T_0 = 1$$

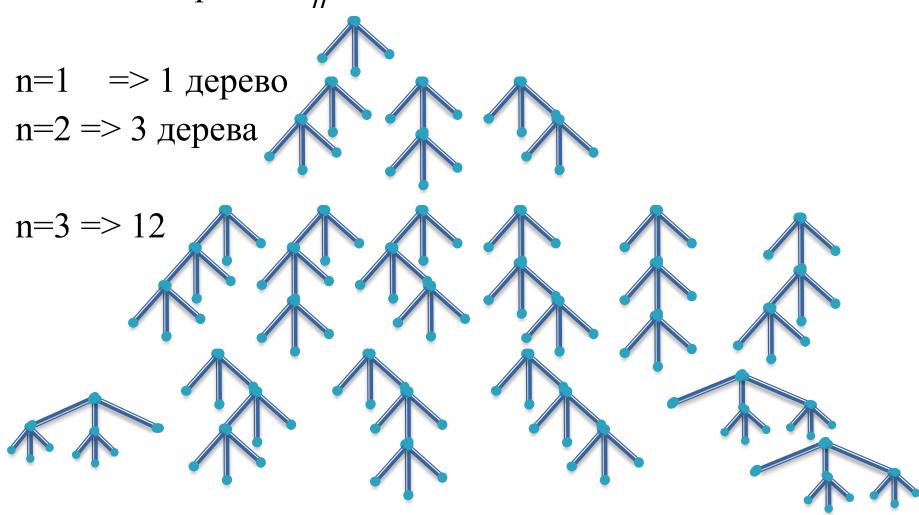
Доказательство теоремы



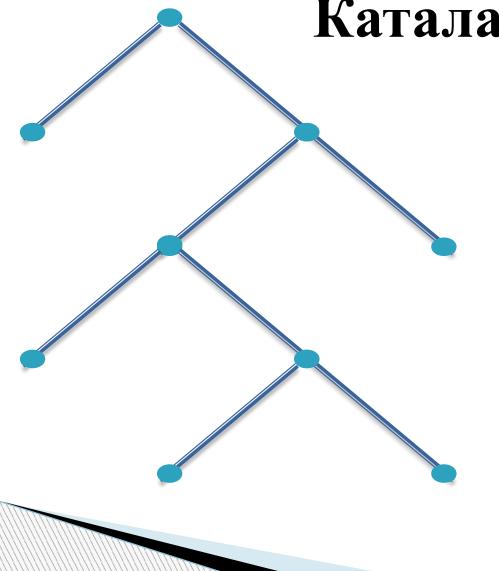
$$\sum_{a+b+c=n} t_a t_b t_c$$

Строго троичные деревья

<u>Следствие</u>: Число строго троичных деревьев с 2n+1 листьями равно \boldsymbol{c}_n



Плоские деревья и числа Каталана



Автор работы: ученик 8 «Б» класса МБОУ лицея «Технический» Баев Даниил

Научный руководитель: к.ф.-м.н., доцент кафедры алгебры и геометрии СГАУ Игнатьев Михаил Викторович