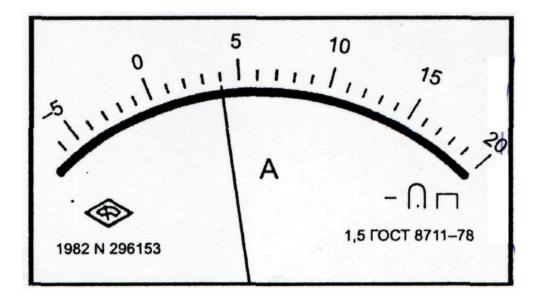
Принципы выбора измерительных приборов для проведения измерения электрических величин

ЭРЭр 17-(9)-2 Васькина Игоря Измерительные приборы зависимо от их предназначения, области внедрения и критерий работы должны выбираться по последующим главным принципам:

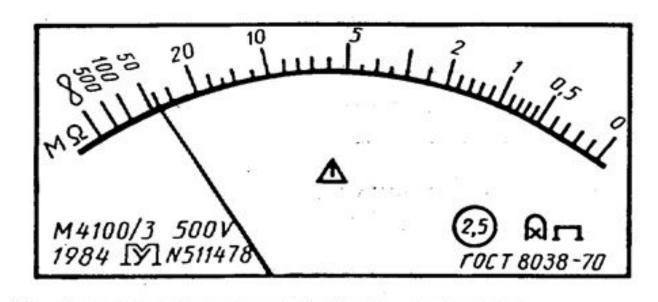

1) Должна существовать возможность измерения исследуемой физической величины

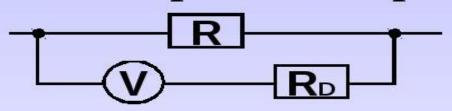
Размерность физической величины

Основные величины	Размерно сть	Сим вол	Описание	Единица СИ
Время	T	t	Продолжительность события.	секунда (с)
Длина	L	l	Протяжённость объекта в одном измерении.	метр (м)
Количество вещества	N	n	Количество однотипных структурных единиц, из которых состоит вещество.	моль (моль)
Macca	M	m	Величина, определяющая инерционные и гравитационные свойства тел.	килограмм (кг)
Сила света	J	I_v	Количество световой энергии, излучаемой в заданном направлении в единицу времени	кандела (кд)
Сила тока	I	I	Протекающий в единицу времени заряд.	ампер (А)
Температура	Θ	T	Средняя кинетическая энергия частиц объекта.	кельвин (К)

2) Пределы измерения прибора должны обхватывать все вероятные значения измеряемой величины

3) Измерительный прибор должен обеспечивать требуемую точность измерений




Рис. 59. Лицевая панель мегаомметра класса точности 2,5 с неравномерной шкалой

4) При проведении неких измерений важную роль играют экономичность (потребление) измерительного прибора, его масса, габариты, размещение органов управления, равномерность шкалы, возможность считывания показаний конкретно по шкале, быстродействие и пр.

5) Подключение прибора не должно значительно оказывать влияние на работу исследуемого устройства, потому при выборе устройств следует учесть их внутреннее сопротивление. При включении измерительного прибора в согласованные цепи входные либо выходные сопротивления должны быть требуемого номинального значения.

Измерение напряжения

Если предел измерения вольтметра недостаточен для измерения напряжения на участке цепи, используется добавочное сопротивление – резистор, включенный в цепь последовательно с вольтметром. (Добавочное сопротивление предназначено для расширения предела измерения вольтметра).

$$U = nU_{V}$$

$$U = U_{D} + U_{V}$$

$$\frac{U_{V}}{R_{V}} = \frac{U_{D}}{R_{D}}$$

$$R_{D} = R_{V} \frac{U_{D}}{U_{V}} = R_{V} \frac{U - U_{V}}{U_{V}} = (n-1)R_{V}$$

6) Прибор должен удовлетворять общим техническим требованиям техники безопасности при производстве измерений, устанавливаемым ГОСГ 22261-76, также техническим условиям либо личным эталонам.

7) Не допускается использовать приборы: с очевидными недостатками измерительной системы, корпуса и т. д, с истекшим сроком поверки, неординарные либо не аттестованные ведомственной метрологической службой, не надлежащие по классу изоляции напряжениям, на которые подключается прибор

