

План лекции

- 1. Факториал
- 2. Основные формулы комбинаторики
 - 1) размещение
 - 2) перестановки
 - 3) сочетания
- 3. Бином Ньютона

e

Комбинаторика или теория конечных множеств — это раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов.

Факториал

Факториалом натурального числа п называется произведение последовательных натуральных чисел от 1 до n включительно

$$0! = 1$$

 $1! = 1$

$$n! = (n-1)!*n$$

 $n! = (n-2)!*(n-1)*n$

1. Размещение

Пусть дано множество, состоящее из n элементов: $X = \{x_1, x_2, ..., x_m\}$.

Размещениями из п элементов по т

называются такие выборки, которые, имея по т элементов, выбранных из числа данных п элементов, отличаются одна от другой либо составом элементов, либо порядком их расположения.

$$A_n^m = \frac{n!}{(n-m)!}, \qquad (n>m)$$

Перестановки

Пусть дано множество, состоящее из n элементов.

Всякое его упорядоченное подмножество, состоящее из n элементов, называется перестановкой из n элементов (т.е. n=m).

$$P_n = A_n^m = \frac{n!}{(n-n)!} = \frac{n!}{0!} = \frac{n!}{1} = n!$$

3. Сочетания

Пусть дано множество, состоящее из n элементов.

Всякое его подмножество, состоящее из m элементов, называется сочетанием из n элементов по m.

Число сочетаний без повторений из n элементов по m может быть вычислено по формуле:

$$C_n^m = \frac{n!}{(n-m)!*m!}, (n \geq m)$$

4. Размещение с повторением

Размещение с повторением –

упорядоченные m-элементные подмножества, которые отличаются и элементами, и порядком их следования, и возможностью повтора.

Число всех размещений с повторениями из n элементов по m можно вычислить по формуле:

$$\widehat{A}_n^m = n^m$$

5. Перестановки с повторениями

Перестановки с повторениями –

упорядоченные подмножества, в которых первый элемент повторяется n_1 раз, второй элемент — n_2 раз, k-й элемент — n_k раз, причем $n_1 + n_2 + ... + n_k = n$

Число перестановок с повторениями можно вычислить по формуле:

$$\widehat{P}_n(n_1, n_2, \dots n_k) = \frac{n!}{n_1! * n_2! * \dots * n_k!}$$

6. Сочетания с повторениями

Сочетания с повторениями – это тэлементные подмножества, п-элементного множества, которые отличаются только элементами и возможностью повтора.

Число всех сочетаний с повторениями из n элементов по m можно вычислить по формуле:

$$\widehat{C}_{n}^{m} = C_{n+m-1}^{m}, = \frac{(m+n-1)!}{m! * (n-1)!} (n \ge m)$$

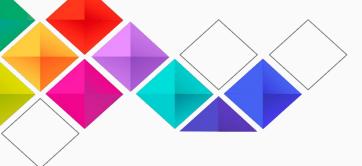
Основные правила комбинаторики

1. Правило сложения

Если требуется осуществить последовательно какие-либо k действий, причем первое можно выполнить n_1 способами, второе — n_2 способами и т.д., то все k действий вместе могут выполнены $n_1 + n_2 + \ldots + n_k$ способами

2. Правило умножения

Если требуется осуществить последовательно какие-либо k действий, причем первое можно выполнить п способами, второе – n, способами и т.д., то выполнить хотя бы одно из этих действий можно $n_1 * n_2 * \dots * n$, способами



Бином Ньютона

Бином – алгебраическая сумма двух любых чисел.

$$(a+b)^n = \sum_{0}^{n} C_n^k * a^{n-k} * b^k$$

 ${\cal C}_n^k$ - биномиальные коэффициенты правая часть формулы — разложение бинома

Свойства биномиальных коэффициентов

1.
$$C_n^1 = n$$

2.
$$C_n^0 = C_n^n = 1$$

3. $C_n^m = C_n^{n-m}$ биномиальные коэффициенты, равноотстоящие от концов, равны между собой.

4.
$$C_n^0 + C_n^1 + C_n^2 + ... + C_n^n = 2^n$$

треугольника Паскаля

n	C_n^k	
0	1	
1	1 1	
2	1 2 1	
3	1 3 3 1	
4	1 4 6 4 1	
5	1 5 10 10 5 1	
6	1 6 15 20 15 6 1	
7	1 7 21 35 35 21 7	1