Погические основы работы компьютера

Булева алгебра (Алгебра логики) – это:

математический аппарат, с помощью которого записывают, вычисляют, упрощают и преобразовывают логические высказывания

Джордж Буль (английский математик, XIX век) разработал основы алгебры, в которой используются только 0 и 1 (алгебра логики, булева алгебра).

Результат выполнения логической операции можно представить как истинность (1) или ложность (0) некоторого высказывания.

Поначалу булева алгебра не имела никакого практического значения. Однако уже в XX веке ее положения нашли применение в разработке различных электронных схем. Законы и аппарат алгебры логики стали использоваться при проектировании различных частей компьютеров (память, процессор).

Алгебра логики оперирует с высказываниями. Под *высказыванием* понимают повествовательное предложение, относительно которого имеет смысл говорить, истинно оно или ложно. Над высказываниями можно производить определенные логические операции, в результате которых получаются новые высказывания. Наиболее часто используются логические операции, выражаемые словами «не», «И», «ИЛИ».

Логические операции удобно описывать так называемыми таблицами истинности, в которых отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний. Простые высказывания обозначаются переменными (например, А и В).

Конъюнкция (логическое умножение)

Конъюнкция (логическое умножение)

Сложное высказывание *A* & *B* истинно только в том случае, когда истинны оба входящих в него высказывания. Истинность такого высказывания задается следующей таблицей:

Обозначим 0 – ложь, 1 – истина

Α	В	A&B
0	0	0
0	1	0
1	0	0
1	1	1

Дизъюнкция (логическое сложение)

Дизъюнкция (логическое сложение)

Сложное высказывание А V В истинно, если истинно хотя бы одно из входящих в него высказываний. Таблица истинности для логической суммы высказываний имеет вил:

Α	В	AVB
0	0	0
0	1	1
1	0	1
1	1	1

Инверсия (логическое отрицание)

Инверсия (логическое отрицание)

Присоединение частицы **HE (NOT)** к данному высказыванию называется операцией отрицания (инверсии). Она обозначается \bar{A} (или $\neg A$)и читается He A. Если высказывание A истинно, то B ложно, и наоборот. Таблица истинности в этом описы имост вид:

Α	¬A
false	true
true	false

Обозначения логических операций И, ИЛИ и НЕ в классической математической логике (V, Λ, ¬) интуитивно непонятны, не проявляют аналогии с обычной алгеброй.

- Альтернативные обозначения «НЕ» черта сверху;
- «И» знак умножения (логическое умножение);
- «ИЛИ» знак «+» (логическое сложение).

Продемонстрируем мощь альтернативных обозначений логических операций:

Логическое	1 · 0 = 0 — очевидно!
умножение	
Логическое	1 + 0 = 1 — очевидно!
сложение	
Логическое	1 + 1 = 1 - He
сложение	очевидно, но можно
	смириться

Примеры логических операций

ИСТИНА ЛОЖЬ

а = гласная а = согласная

(А = гласная) И (О = гласная) (А = гласная) И (З = гласная)

(А = гласная) ИЛИ (З = гласная) (А = согласная) ИЛИ (З = гласная)

Закрепление материала

- 1) 1 чётное
- 2) 28 чётное
- 3) HE (2 чётное)
- 4) (2 чётное) И (3 чётное)
- 5) HE (2 чётное) ИЛИ (3 чётное)
- 6) НЕ ((2 чётное) ИЛИ (3 чётное))