

ЦЕЛИ УРОКА

ОБРАЗОВАТЕЛЬНАЯ: изучить виды свойства и применение антифрикционных сплавов

РАЗВИВАЮЩАЯ: развить способность к самостоятельному поиску и анализу информации

ВОСПИТАТЕЛЬНАЯ: понимание необходимости самообразования в целях повышения уровня знаний

Антифрикционные сплавы сплавы с низким коэффициентом трения. Они предназначены для повышения долговечности трущихся поверхностей машин и механизмов (валов или осей с вкладышами подшипников).

Трение происходит в подшипниках скольжения между валом и вкладышем подшипника. Поэтому для вкладыша подшипника подбирают такой материал, который предохраняет вал от износа, сам минимально изнашивается, создает условия для оптимальной смазки и уменьшает коэффициент трения.

Антифрикционный материал представляет собой сочетания достаточно прочной и пластичной основы, в которой имеются опорные (твердые) включения.

при трении пластичная основа частично изнашивается, а вал опирается на твердые включения. В этом случае трение происходит не по всей поверхности подшипника, а смазка удерживается в изнашивающихся местах ппастичной основы

Антифрикционные сплавы хорошо прирабатываются в парах трения благодаря мягкой основе — олову, свинцу или алюминию. Более твердые металлы (цинк, медь, сурьма), вкрапленные в мягкую основу, способны выдерживать большие нагрузки.

После приработки и частичной деформации мягкой основы в ней образуются углубления, способные удерживать смазку, необходимую для нормальной работы пары.

Требования к антифрикционным (подшипниковым) сплавам:

- наличие достаточной пластичности для лучшей прирабатываемости трущихся поверхностей и твердости, не вызывающей сильного истирания;
 - придание рабочей поверхности вкладыша микрокапиллярности (наличие мелких пор, позволяющих удерживать смазку);
 - малый коэффициент трения с материалом вращающегося вала;
 - высокая теплопроводность.

Антифрикционными сплавами служат сплавы на основе олова, свинца, меди или алюминия, обладающие специальными антифрикционными свойствами

Баббиты —

антифрикционные материалы на основе олова или свинца. Их применяют для заливки вкладышей подшипников скольжения, работающих при больших окружных скоростях и при переменных и ударных нагрузках.

По химическому составу баббиты классифицируют на три группы:

- оловянные Б83, Б88;
- оловянно-свинцовые БС6, Б16;
 - свинцовые БК2, БКА. Последние не имеют в своем составе олова.

Антифрикционные сплавы на основе меди

Для оловянных и оловяннофосфористых бронз (Бр. ОЦС5-5-5) характерны высокие антифрикционные свойства: низкий коэффициент трения, небольшой износ, высокая теплопроводность, что позволяет подшипникам, изготовленным из этих материалов, работать при высоких окружных скоростях и

Алюминиевые бронзы, используемые в качестве подшипниковых сплавов, отличаются большой износостойкостью, но могут вызвать повышенный износ вала. Их применяют вместо оловянных и свинцовых баббитов и свинцовых бронз.

Свинцовые бронзы в качестве подшипниковых сплавов могут работать в условиях ударной нагрузки.

Латуни по антифрикционным свойствам уступают бронзам. Их используют для подшипников, работающих при малых скоростях и умеренных нагрузках.

Антифрикционные сплавы на основе алюминия (из-за дефицитности олова и свинца)

Алюминиевые сплавы обладают хорошими антифрикционными свойствами, высокой теплопроводностью, хорошей коррозионной стойкостью в масляных средах и достаточно хорошими механическими и технологическими свойствами.

Их применяют в виде тонкого слоя, нанесенного на стальное основание, т. е. в виде биметаллического материала.

Сплавы алюминия с сурьмой, медью и другими элементами, которые образуют твердые фазы в мягкой алюминиевой основе.

Наибольшее распространение получил сплав АСМ, содержащий сурьму (до 6,5 %) и магний (0,3 — 0,7 %).

Сплав АСІИ хорошо работает при высоких нагрузках и больших скоростях в условиях жидкостного трения. Сплав АСМ широко применяют для изготовления вкладышей подшипников коленчатого вала двигателей νμορορ μι αρμομοδιιποϊ

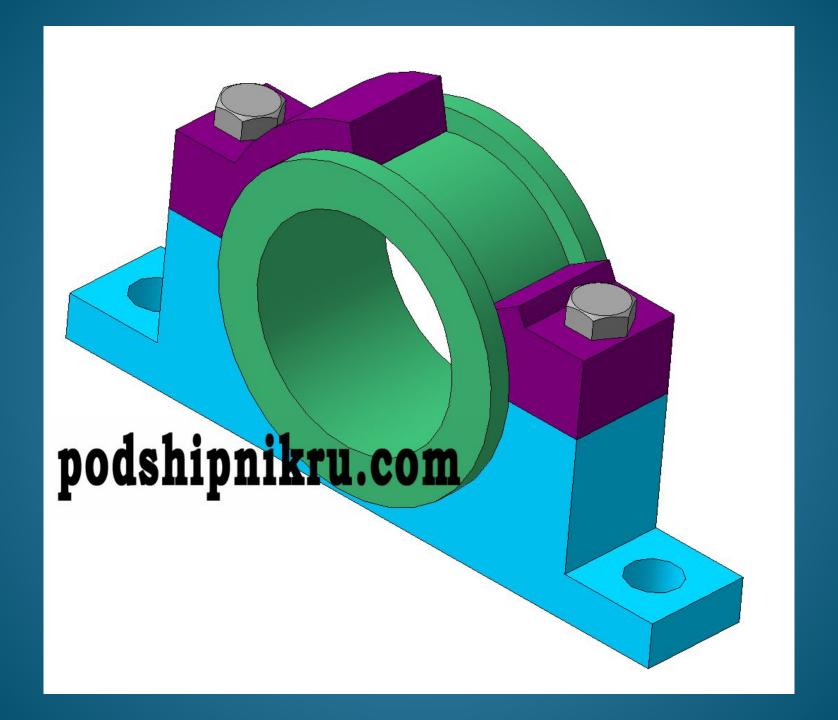
Сплавы алюминия с оловом и медью, например AO20-1 (20% олова и до 1,2% меди) и А09-2 (9 % олова и 2 % меди). Они хорошо работают в условиях сухого и полужидкого трения и по антифрикционным свойствам близки к баббитам.

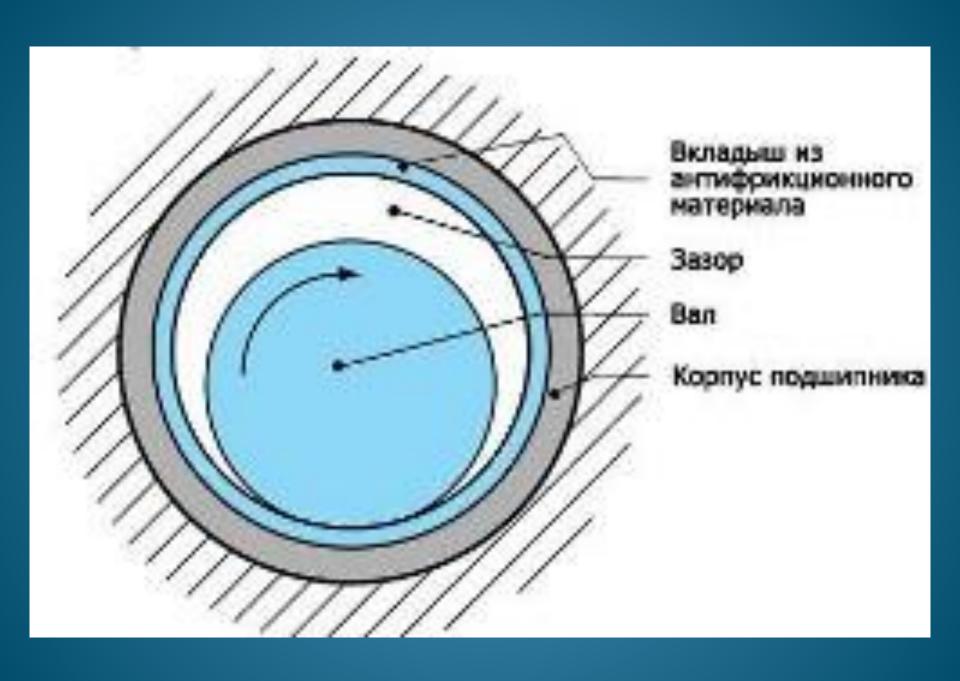
Их используют для производства подшипников в автомобилестроении, транспортном и общем машиностроении.

Антифрикционные сплавы на основе чугуна

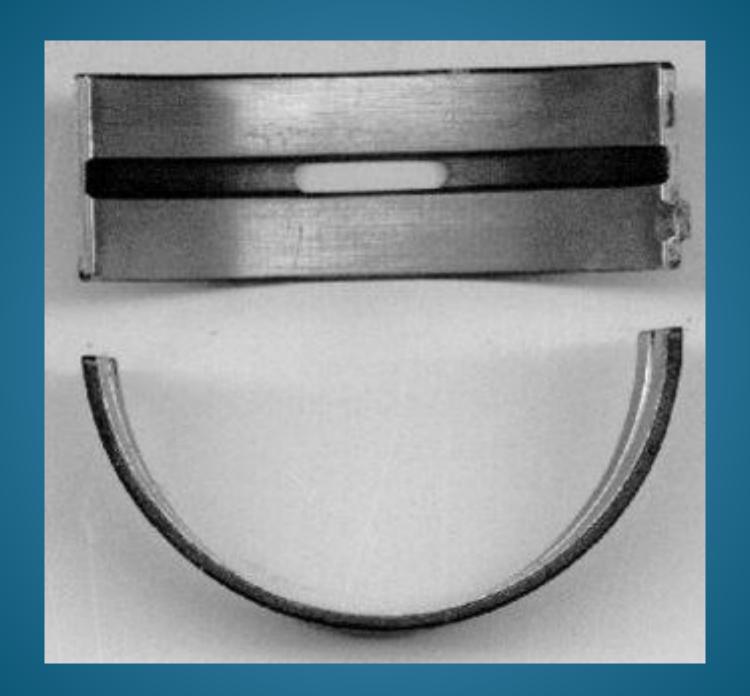
Для работы в подшипниковых узлах трения применяют специальные антифрикционные чугуны (серый, высокопрочный с шаровидным графитом и ковкий).

Антифрикционный чугун идет на изготовление червячных зубчатых колес, направляющих для ползунов и т. п. деталей машин, работающих в условиях трения.


Металлокерамические антифрикционные сплавы


Металлокерамические сплавы получают прессованием и спеканием порошков бронзы или железа с графитом (1 — 4%). *После* спекания сплавы пропитывают минеральными маслами, смазками или маслографитовой

Сплавы хорошо прирабатываются к валу, а наличие смазки в порах способствует снижению износа подшипника.


Назначение антифрикционных сплавов

Материал	Марка	Условия применения		
		Давление,	Окружная	Назначение
		МПа	скорость,	
			м/с	
Баббит	Б88	20	50	Подшипники быстроходных дизелей
	БС6	15	-	Подшипники автотракторных двигателей
Бронза	БрОЦС5-5-5	8	3	Подшипники электродвигателей
				центробежных насосов
Латунь	ЛМцЖ52-4-1	4	2	Подшипники рольгангов, конвейеров,
				редукторов
Чугун	АЧС-1	25	5	Для работы с закаленным или
	A4C-5	20	1,2	нормализованным
	АЧВ-1	20	1,0	С термически необработанным валом (в
	АЧК-1	20	2,0	стадии поставки)
	АЧС-3	6	0,75	
	АЧК-2	12	1,0	
Металлокерамика	Бронзо-	12-18	0,1	Подшипники конвейеров
	графит	0,8-1,2	4,0	сельскохозяйственных и других машин
	Железо-	15	0,1	подшипники, работающие в местах
	графит	0,6-1,0	4,0	труднодоступных для подачи смазки

