DHCP

Dynamic Host Configuration Protocol

Overview

- Introduction
- Characteristics
- Software Elements
- DHCP Terminology
- DHCP Client Initialization
- DHCP States & Procedures
- DHCP Security

What is DHCP?

- Clients should require no manual configuration by the user to connect to the network.
 - Each client should be able to discover appropriate configuration information dynamically.
 - IP address, DNS servers, WINS servers, etc.
- This is normally accomplished through the use of a Dynamic Host Configuration Protocol
 - Uses UDP
 - Ports 67 and 68

DHCP - Introduction

- DHCP was created by the Dynamic Host Configuration
 Working Group of the Internet Engineering Task Force(IETF)
- Runs over UDP
- Utilizing ports:
 - 67 connections to server
 - 68 connections to client
- Extension of BOOTP (protocol used for simple interaction) DHCP enhances the capabilities of BOOTP
- DHCP is basically used for dynamic configuration
- Uses client-server model

Objective of DHCP

- DHCP temporarily binds IP address & other configuration parameters to DHCP client & provides framework for passing configuration information to hosts
- DHCP was designed to provide computers with temporary address
- DHCP is well adapted to situation where hosts move from one location to another or are routinely connected and disconnected
- Thus DHCP is mainly used to simplify the installation & maintenance of networked computers.

Characteristics

- Centralized IP address administration
- Backward compatible with BOOTP therefore a host running the BOOTP client software can request a static configuration from a DHCP server
- Supports multiple servers
- Provides dynamic assignment
- Allows static assignment
- Doesn't interact with domain name service (DNS)

Software Elements

Client Software :

- installed in client machines
- to handle broadcast requests
- for automatic IP acquisition & acquiring other configuration

Sever Software :

- installed in server machines
- designated to respond to client requests for IP address
- manage pools of IP addresses & related configuration

Relay Agent Software :

DHCP clients broadcasts requests onto local n/w

Software Elements

Relay Agent Software :

- Routers block broadcasts to outer network which means responses from the DHCP servers must come from same network
- DHCP relay agents intercepts IP address requests
- repackages the requests
- rebroadcasts them as unicast messages to DHCP servers with known addresses of other network
- DHCP servers sends its reply to relay agent which in turn forwards them to client requesting the IP address

Software Elements

Relay Agent Software :

Client Initialization via DHCP

Client Initialization via DHCP

- Fig. shows one client and 2 servers
- DHCPDISCOVER is broadcast because client does not know IP address of DHCP server; BOOTP relay agents may relay it to other DHCP servers
- One or more DHCP servers respond with DHCPOFFER, which carry the IP address and other parameters.
- Client may wait for multiple replies and then choose one offer. It broadcasts DHCPREQUEST accepting one of the servers and rejecting the others
- The accepted server then confirms the configuration with DHCPACK
- If a client leaves a subnet it should release the server by DHCPRELEASE.

- With DHCP, transition of client occurs using 6 states: initialization, selection, request, bound, renew and rebind
- DHCP uses the first 4 states to initialize IP address
- And 4 states are used to rebind, renew or release an IP address.
- The six states are used to perform essentially 3 processes:
 discovery, renewal, and release which are described below...
- DHCP Address Discovery Process:
- When client boots ,it executes a standard address discovery process
- Once IP address acquired, it tests the address by sending ARP broadcast.
- DHCP uses 4-step processes to allocate IP addresses: Discovery,
 Offer, Request, Acknowledgment processes.

- <u>DHCP Address Discovery Process</u>: The state transitions that performs standard discovery procedure to acquire IP address is:
- i) <u>Initialization State to Selection State</u>: When the client is booting up, it is the first stage. Here it sends **DHCP Discover** message that places the client in Selection state.
- ii) <u>Selection State to Request State</u>: One or more servers respond to broadcast message with a **DHCP Offer** message. Client chooses the best offer and negotiate by sending DHCP REQUEST message
- iii) Request State to Bound State: The server responds to the request message with a positive acknowledgement (DHCP ACK) which begins the lease time and puts the client in the bound state

DHCP Address Renewal Process :

DHCP Security

- DHCP is an unauthenticated protocol
 - When connecting to a network, the user is not required to provide credentials in order to obtain a lease
 - Also the server is also not the authenticated one
 - Malicious users with physical access to the DHCP-enabled network can start a denial-of-service attack on DHCP servers by requesting many leases from the server, thereby reducing the number of leases that are available to other DHCP clients