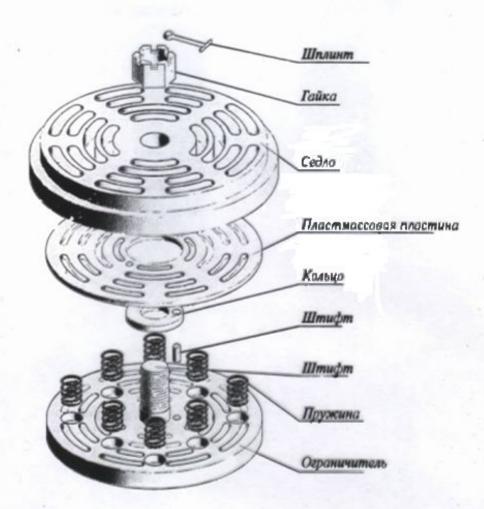
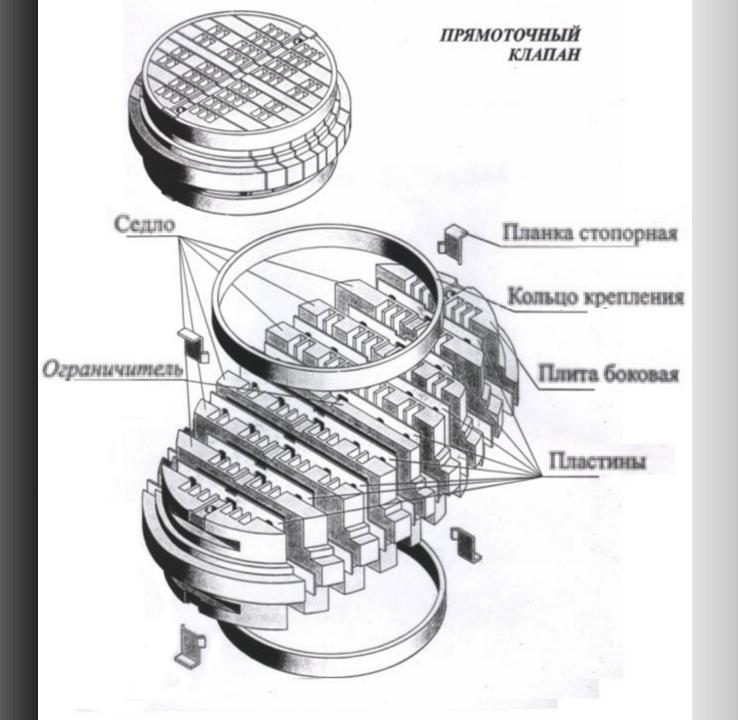
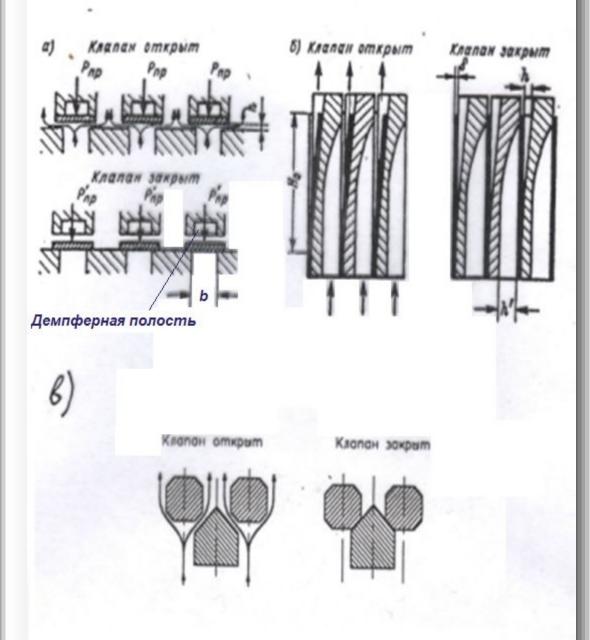
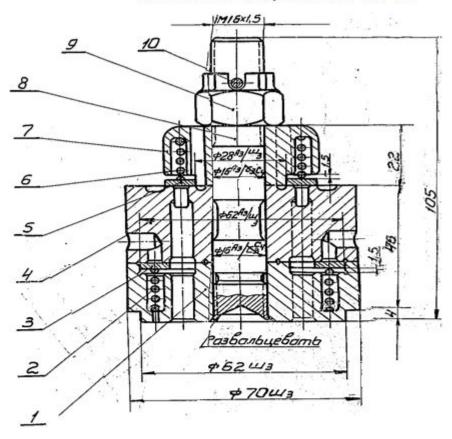

КЛАПАНЫ





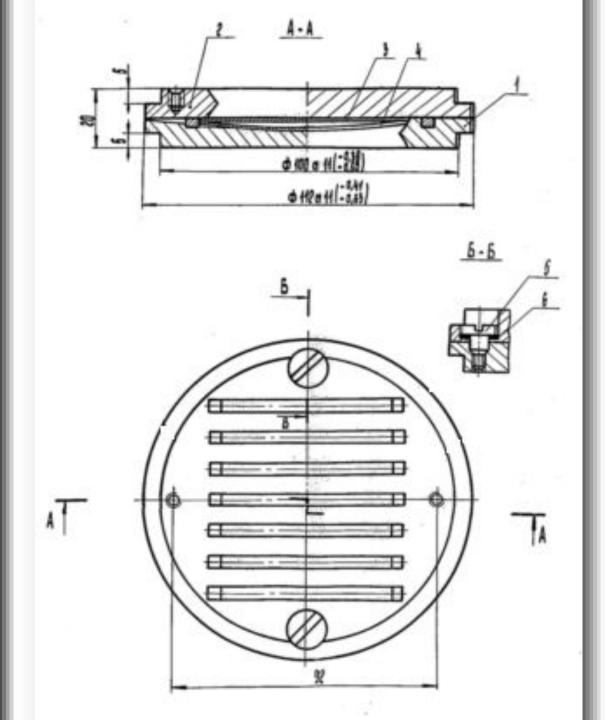


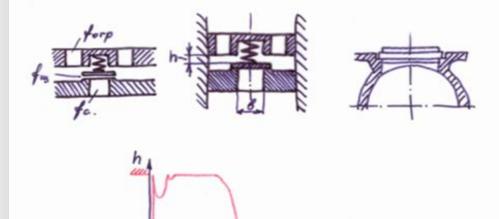
ДИСКОВЫЕ КЛАПАНЫ с пластинасовыми пластинами



Клапан комбинированный КК - 62

I Максимально допустимый перепад давления - 150 ата.

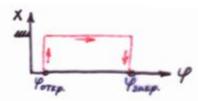

I Площадь прохода в щели:


1. Всасыв. клапана ф = 1,675 cm2

2. Нагнетат. клапана ф = 2.64 cm 2°

Ш Объем вредного пространства клапана V=28,85°м3

Bisic	ora nogzem	a nac	CTUMBI "
Tinal	TUMO SOJALU	Dear	T/140 MO100
MITT	POKTUYECKOR	HOMUM	PORTUYECKOR
1,4	0,91,22	1.0	09122



Требования к самодействующим клапанам:

- 1) малый мертвый объем,
- 2) малые гидравлические сопротивления,
- 3) своевременность открытия и закрытия,
- 4) плотность в закрытом состоянии,
- 5) надежность, долговечность,
- 6) взаимозаменяемость.

Важно! Взаимосвязь между требованиями.

Два подхода к изменению площади щели:

- 1) мгновенное открытие и закрытие,
- 2) не мгновенное открытие и закрытие

Два подхода к описанию массовых потоков:

Предполагается, что жидкость - идеальный газ.

$$\omega = \sqrt{\frac{2\kappa}{\kappa-1}} \frac{p_0}{g_0} \left[1 - \left(\frac{p}{p_0} \right)^{\frac{\kappa-1}{\kappa}} \right] \qquad (6.4)$$

или

$$M = \oint \sqrt{\frac{2\kappa}{\kappa - 1}} \cdot \rho_{\bullet} \cdot \rho_{\bullet} \left[\left(\frac{P}{P_{\bullet}} \right)^{\frac{2}{\kappa}} - \left(\frac{P}{P_{\bullet}} \right)^{\frac{\kappa + 1}{\kappa}} \right]$$
 (6.2)

Для реального клапана

$$M = M \cdot f \cdot \sqrt{\frac{2\kappa}{\kappa-1}} \cdot p_0 \cdot \beta_0 \left[\left(\frac{p}{p_0} \right)^{\frac{2}{\kappa}} - \left(\frac{p}{p_0} \right)^{\frac{\kappa+1}{\kappa}} \right]$$
 (6.3)

(2) Предполагается, что жидкость несжимаема.

или для сжимаемой жидкости

где

$$\mathcal{E}_{p} = 1 - \frac{C}{\kappa} \cdot \frac{p_{o} - p}{p_{o}} \tag{6.5}$$

ЭКВИВАЛЕНТНАЯ ПЛОЩАДЬ

Для несжимаемой жидкости

$$\Delta p = \zeta \frac{C_r^2}{2} \rho = \zeta \frac{V^2}{2f^2} \cdot \rho \qquad (6.6)$$

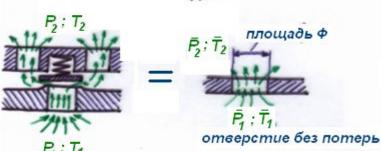
откуда

$$V = \frac{1}{\sqrt{E}} \oint \sqrt{2 \frac{\Delta P}{P}} \qquad (6.7)$$

Тогда

$$\nabla = \cancel{A \cdot \cancel{f}} \cdot \sqrt{2 \frac{\triangle \cancel{P}}{\cancel{P}}} \qquad (6.9)$$

$$\cancel{A \cdot \cancel{f}} = \cancel{\Phi} \cdot (\cancel{\Phi} < \cancel{f}) \qquad (6.10)$$


Теперь

$$V = \phi \sqrt{2 \frac{\delta P}{P}} \tag{6.14}$$

Можно получить

экеивалентным отверстием

Замена клапана

$$p_{\bullet} = \overline{p}_{\bullet}$$
; $T_{\bullet} = \overline{T}_{\bullet}$

$$\alpha_{\rm m}$$
 для дисковых клапанов

Для полосовых клапанов
$$\left(\frac{x}{8}\right)_{npub} = \frac{f_{np}}{2f_c}$$

ЭКВИВАЛЕНТНАЯ СКОРОСТЬ ГАЗА В КЛАПАНЕ

$$W_{\phi} = \frac{V}{\Phi} = \frac{V}{\alpha \cdot p} = \frac{V}{p} \cdot \sqrt{p}$$
 (6.14)

$$\Delta p = \frac{w_{\phi}^2}{2} \cdot p \tag{6.15}$$

КОЭФФИЦИЕНТ РАСШИРЕНИЯ

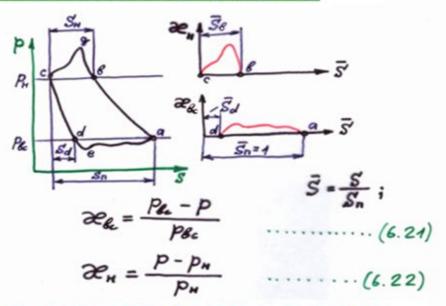
Общее выражение для Е, см. ур-ние (6.5)

В компрессорах принято

$$E_p = 1 - 0.3 \frac{P_4 - P_2}{P_4}$$
 (6.17)

УСЛОВНАЯ ЭКВИВАЛЕНТНАЯ СКОРОСТЬ ГАЗА В КЛАПАНЕ

$$\overline{W}_{\phi} = C_m \cdot \frac{F_n}{Z_m \cdot \Phi} \tag{6.18}$$


КРИТЕРИЙ СКОРОСТИ ГАЗА

$$\tilde{F} = \frac{\overline{W_0}}{a_{s\theta}} \tag{6.19}$$

$$\tilde{F} = \frac{2 F_n \cdot r \cdot \omega}{\pi \cdot \omega_m \cdot Z_{Ki} f_m \cdot \sqrt{\kappa \cdot R \cdot T}}$$
(6.20)

(F-не есть число Maxa!)

ОТНОСИТЕЛЬНАЯ ПОТЕРЯ ДАВЛЕНИЯ

БЕЗРАЗМЕРНАЯ ПОТЕРЯ РАБОТЫ В КЛАПАНЕ

$$i_{R} = \frac{\Delta L_{R, Kn}}{P_{R} \cdot \overline{V}_{h}} \qquad (6.23)$$

$$i_{H} = \frac{\Delta L_{H, Kn}}{P_{H} \cdot \overline{V}_{h}} \qquad (6.24)$$

$$i_{R} = \int_{\mathbb{Z}_{H}} \frac{\partial L_{H, Kn}}{\partial S} \qquad (6.23^{\circ})$$

$$i_{H} = \int_{\mathbb{Z}_{H}} \frac{\partial S_{R}}{\partial S} \qquad (6.23^{\circ})$$

$$i_{H} = \int_{\mathbb{Z}_{H}} \frac{\partial S_{R}}{\partial S} \qquad (6.24^{\circ})$$

$$\bar{S}_{g} = S_{H}/S_{n} ; \qquad \bar{S}_{g} = S_{d}/S_{n};$$

ПОТЕРИ ДАВЛЕНИЯ ВО ВСАСЫВАЮЩЕМ КЛАПАНЕ

С одной стороны (изменение количества газа в полости цилиндра):

из приращения внутренней энергии газа в цилиндре, равной разности энтальпии поступающего в цилиндр газа и работы, затраченной газом на перемещение поршня.

получим

$$M = \frac{dm}{dt} = \frac{Pk_c}{RT_{dc}} \left[-\frac{V}{\kappa} \cdot \frac{d\mathcal{L}_{dc,T}}{dt} + \left(t - \mathcal{L}_{dc,T} \right) \frac{dV}{dt} \right]. \quad (6.27)$$

Т.к.

ade
$$f(\varphi) = 2a_m + 1 - Co \varphi + \frac{\lambda_R}{2} \cdot \sin^2 \varphi$$

 $f(\varphi) = \dim \varphi + \frac{\lambda_R}{2} \sin 2 \varphi$

mo

где

С другой стороны (количество газа, проходящее через клапан)

Приравнивая М из (6.29) и (6.32), получим

$$\frac{d\varkappa_{k,\tau}}{d\ell} = \frac{-\kappa (1-0.3 \mathscr{L}_{k,\tau}) \cdot \mathscr{L}_{k,\tau} \cdot d_{m} \cdot Z_{k,\tau} \cdot \sqrt{2RT'}}{F_{n} \cdot r \cdot \omega \cdot f(\ell)} + \kappa (1-\mathscr{L}_{k,\tau}) \cdot \frac{f(\ell)}{f(\ell)} \qquad (6.33)$$

Учитывая, что

получим в безразмерном виде

Внимание! В уравнение (6.34) неявно входит 🛵 в виде

ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ПОТЕРИ ДАВЛЕНИЯ В НАГНЕТАТЕЛЬНОМ КЛАПАНЕ

Аналогичным путем можно найти

$$\frac{d\mathcal{Z}_{H}}{d\mathcal{V}} = -\frac{\kappa (1 - 0.3 \frac{\mathcal{Z}_{H}}{1 - \mathcal{Z}_{H}}) (1 + \mathcal{Z}_{H})^{\frac{2\kappa - 1}{2\kappa}} \cdot \mathcal{Z}_{H} \cdot \mathcal{Z}_{-1} \mathcal{Z}_{-1} \mathcal{Z}_{-1}}{F_{\Pi} \cdot \mathcal{Z} \cdot \omega \cdot \mathcal{F}(\mathcal{V})} - \kappa \left(1 + \mathcal{Z}_{H}\right) \cdot \frac{\mathcal{F}(\mathcal{V})}{\mathcal{F}(\mathcal{V})}$$

$$(6.39)$$

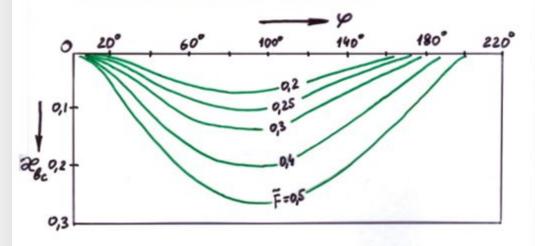
или в безразмерном виде

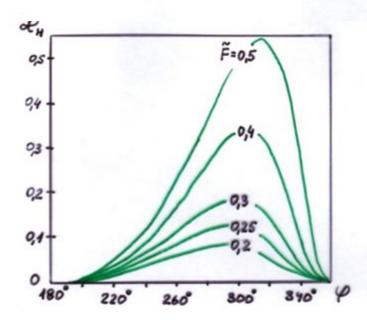
$$\frac{d\mathcal{Z}_{H}}{d\mathcal{V}} = -\frac{2\sqrt{2\kappa}}{\pi \cdot \tilde{F}_{H} \cdot f(\psi)} \left(1 - 0.3 \frac{\mathcal{Z}_{H}}{1 + \mathcal{Z}_{H}}\right) \left(1 + \mathcal{Z}_{H}\right)^{\frac{2\kappa - 1}{2\kappa}} \mathcal{Z}_{H}^{q_{5}} - \kappa \left(1 + \mathcal{Z}_{H}\right) \cdot \frac{f(\psi)}{f(\psi)}$$

$$(6.40)$$

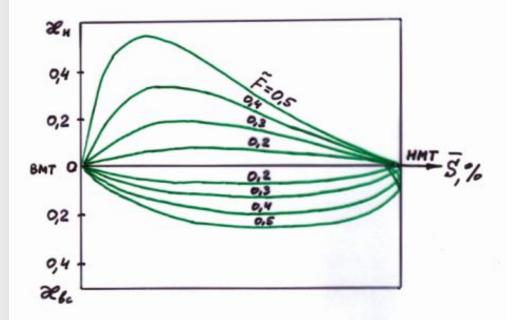
Т.о. имеем

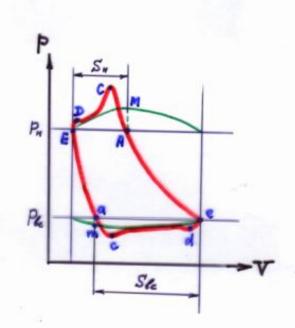
$$\frac{\partial \mathcal{L}_{\tau}}{\partial \mathcal{Y}} = f(\mathcal{Y}; \mathcal{L}_{\tau}; \tilde{F}) \tag{6.41}$$

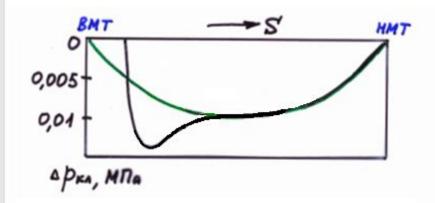

В общем случае $\widetilde{F} = var$.


Полагаем \widetilde{F} = \widetilde{F} ₀ =Const

$$\frac{d\mathcal{Z}_{\tau}}{d\theta} = f\left(\theta; \mathcal{Z}_{\tau}; \vec{F}_{o}\right) \tag{6.42}$$


 $\widetilde{\textit{\textbf{F}}}_{o}$ становится параметром!


<u>Полость крышки:</u> $a_M = 10\%$; K = 1,4; $\lambda_R = 1/4$; открытие и закрытие - меновенное



Аналогичные решения имеются для полости штока

<u>ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ</u> <u>ЭКВИВАЛЕНТНОЙ ПЛОЩАДИ КЛАПАНА Ф</u>

$$m_{\kappa\pi} = m_o$$

<u>ПОДБОР СТАНДАРТИЗОВАННОГО</u> <u>КЛАПАНА</u>

- Подбор клапана необходимой пропускной способности.
- 2) Подбор усилия пружины.

ПОДБОР КЛАПАНА НЕОБХОДИМОЙ ПРОПУСКНОЙ СПОСОБНОСТИ

Что такое - "пропускная способность"?

Рекомендуемый порядок подбора клапанов:

 Задаются допустимыми относительными потерями мощности в клапанах (і, ΔΝкл/Nом).

Для $a_M = 10\%$; K = 1,4 и $\mathcal{E} = 3$:

P_{вс} ,МПа 0,1... 0,5 0,5...1,5 1,5... 5,0 5,0...15

(ΔNкл_{/Noм})_{max} 11,2% 9,2% 7,4% 5,8%

 $\tilde{F}_{max} = {^{C}}_{\phi}/{_{C_{36}}} 0.22$ 0.2 0.18 0.16

② Находят сответствующие допустимым ѝ или △Nкл / Nом значения Ӗ (по таблицам и графикам)

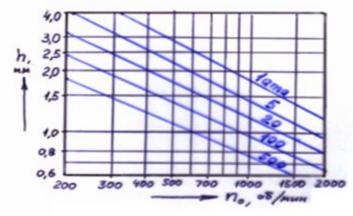
Корректируют $\tilde{F}_{\text{max}}^{I} = \tilde{F}_{\text{max}} \sqrt{\frac{1.4}{\kappa}}$ (6.44)

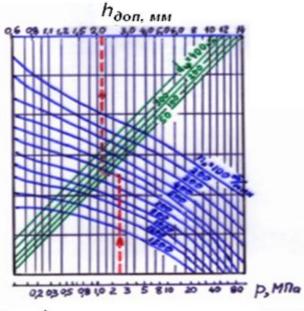
Определяют допустимую условную эквивалентную скорость газа в клапанах \overline{C}_{ϕ} , при которой будут обеспечены допустимые потери

$$\vec{C}_{\phi} = \widetilde{F}_{\text{Ax}} \cdot C_{26}$$
,
где $C_{36} = \sqrt{k \cdot R \cdot T}'$ — скорость звука.

По допустимому значению Сф находим значение эквивалентной площади Ф клапанов, которое обеспечит допустимые потери энергии в клапанах

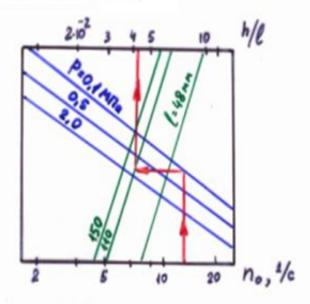
$$\phi = \frac{F_n \cdot C_m}{Z \cdot \overline{C}_{\phi}}$$


(6.45)


По значению эквивалентной площади Ф подбирают клапаны.

<u>Высоту подъема клапана h</u> выбирают по рекомендациям:

для кольцевых клапанов



или

 $h = f(n_o; p; d_{cp})$

Для полосовых клапанов

Для прямоточных клапанов:

подъем конца пластины до 2,2 мм при n_o до 25 1/c подъем конца пластины до 2,6 мм при n_o до 12,5 1/c

ПОДБОР УСИЛИЯ ПРУЖИНЫ

Слабая пружина - запаздывание закрытия клапана. Сильная пружина - открытие клапана запаздывает, клапан не открывается полностью.

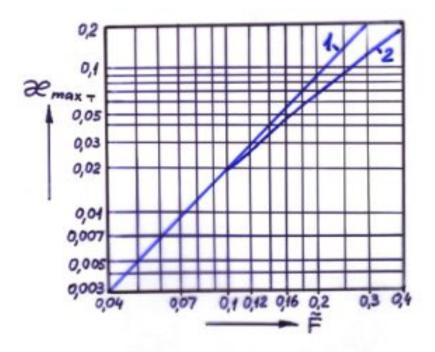
Выбор усилия пружины - компромисс.

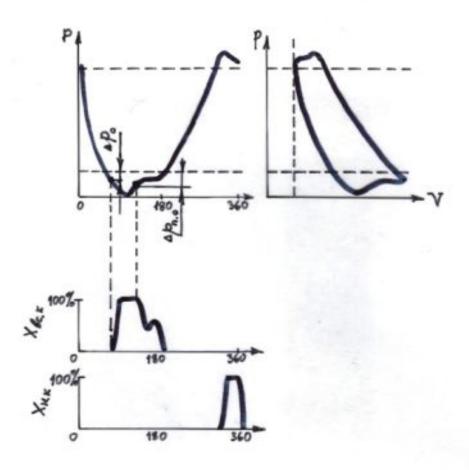
Два пути выбора усилия пружины:

- через рово минимальный перепад давления, обеспечивающий полное открытие клапана при определенном усилии пружины,
- 2) используя математическую модель.

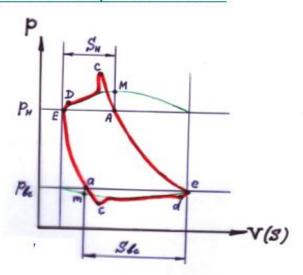
Значение

$$\Theta = \frac{\mathcal{Z}_{no}}{\mathcal{Z}_{rmax}} = 0.1 \div 03 \qquad (6.46)$$


$$\mathcal{Z}_{no} = \frac{ap_{no}}{D} \qquad (6.47)$$


$$\mathcal{Z}_{no} = \frac{\Delta p_{no}}{p}$$

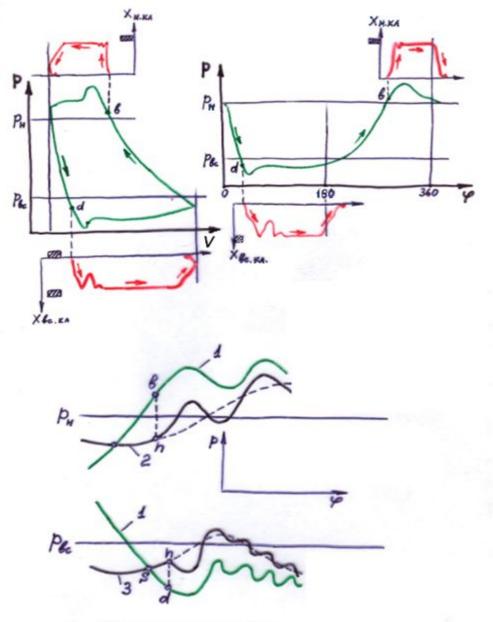
$$\Delta p_{no} = \mathcal{Z}_{no} p = \Theta \cdot \mathcal{Z}_{max} \cdot p$$
(6.47)


Значение робыло определено по рекомендациям отдельно для каждого типа клапанов (см. Пластинин П.И. Поршневые компрессоры. Том 1).

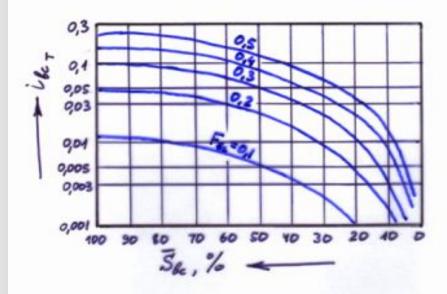
$$P_{np} = \Delta p_{no} \cdot \rho_p \cdot f_c$$

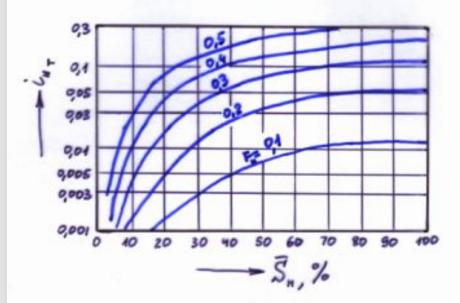
<u>РАСЧЕТ ПОТЕРЬ МОЩНОСТИ В</u> САМОДЕЙСТВУЮЩИХ КЛАПАНАХ

Действительные потери - пл. a-c-d-e-a и - пл. A-C-D-E-A


Теоретические потери - пл. a-m-e-a и - пл. A-M-E-A

$$\dot{c}_{\ell_{e_{\tau}}} = \int \mathcal{Z}_{\ell_{e_{\tau}}} d\vec{s} \qquad (6.23^{\circ} \text{ u } 6.53)$$


$$\dot{c}_{h} = \int \mathcal{Z}_{h_{\tau}} d\vec{s} \qquad (6.24^{\circ} \text{ u } 6.54)$$


$$\bar{S}_{\ell_{h}} = \frac{S\ell_{e}}{S_{n}} = 1 - \alpha_{m} \left[\left(\frac{P_{h}}{P\ell_{e}} \right)^{\frac{1}{m}} - 1 \right] \qquad (6.54)$$

$$\bar{S}_{h} = \frac{S_{h}}{S_{h}} = \frac{1 + \alpha_{h}}{S_{h}} - \alpha_{h} \qquad (6.52)$$

- 1 давление в цилиндре
- 2 давление в нагнетательной полости
- 3 давление в полости всасывания

Ψ_ε =
$$\frac{nn. a - c - d - e - a}{nn. a - m - e - a}$$

$$\psi_{\mathsf{M}} = \frac{\mathsf{nn.} \, \mathsf{A} \cdot \mathsf{C} \cdot \mathsf{D} \cdot \mathsf{E} \cdot \mathsf{A}}{\mathsf{nn.} \, \mathsf{A} \cdot \mathsf{M} \cdot \mathsf{E} \cdot \mathsf{A}}$$

$$\Psi_{H} = 1 + \ell_{H} + M_{H}$$
, (6.57)

где *м* - коэффициенты влияния массы пластины и силы прилипания

коэффициенты влияния силы пружины

Рекомендации по выбору значений м и см. в книге Пластинин П.И. Поршневые компрессоры. Том 1.

м и 🗸 зависят от типа клапанов:

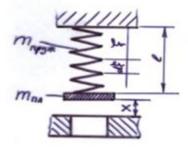
$$\mu_{\text{кольц.}} > \mu_{\text{полос.}} > \mu_{\text{прямоточ.}}$$

√ - зависит также от €, № № / № , вида полости.

ДИНАМИКА КЛАПАНОВ

<u>ДИНАМИКА ДВИЖЕНИЯ ПЛАСТИНЫ</u> <u>САМОДЕЙСТВУЮЩЕГО КЛАПАНА</u>

Основные подходы:


- 1) одномассовый,
- 2) многомассовый

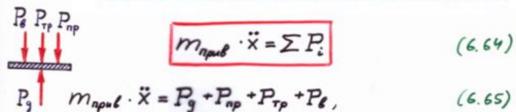
3) распределенная масса

Приведенная масса системы "пластина - пружина"

При расчете динамики рассматривают движение системы "пластина + пружина", т.е. следует учитывать и массу пружин.

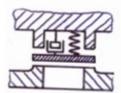
Положим, в положении "Х" пластина имеет скорость Х.

Точка на расстоянии у от фиксированного конца пружины имеет перемещение — х и скорость — х


Кинетическая энергия элемента 🏕 🐔 пружины равна

Кинетическая энергия системы "пластина - пружина"

$$E = \frac{1}{2} m_{nA} \cdot \dot{x}^{2} + \frac{m_{npyk}}{2\ell^{3}} \cdot \dot{x}^{2} \cdot \int_{0}^{2} \dot{x}^{2} d\dot{y} = \frac{1}{2} (m_{nA} + \frac{1}{3} m_{npyk}) \cdot \dot{x}^{2}$$


$$m_{npub} = m_{nA} + \frac{1}{3} m_{npyk}. \tag{6.63}$$

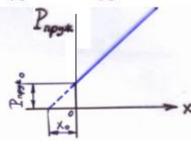
ОСНОВНОЕ УРАВНЕНИЕ ДИНАМИКИ КЛАПАНА

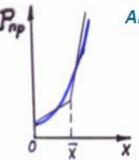
SQE

Р - сила воздействия газового давления,

Р - сила действия пружины,

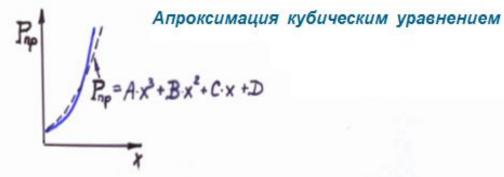
Ртр - сила трения о направляющие, о газ, сила демпфирования газовой подушки,

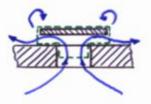

P₂ - сила веса пластины.


СИЛА ПРУЖИНЫ

Линейная характеристика силы упругости пружины

$$P_{npysk} = C_{npysk}(x + x_o) = P_{np}$$


Х. - дефармация предварительного натяга пружины


Апроксимация двумя линейными участками

$$P_{np} = A \cdot x + B$$
 на участке $\bar{x} < x < h$, $P_{np} = C \cdot x + D$ на участке $0 < x < \bar{x}$.

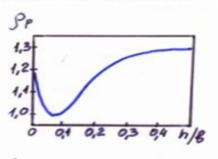
Иногда используют понятие "приведенное усилие пружины", т.е. усилие, приходящееся на единицу проходного сечения в седле

СИЛА ДАВЛЕНИЯ ГАЗА

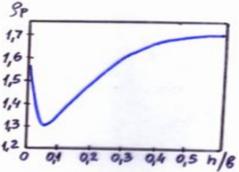
С верхней стороны пластины давление также неравномерно.

Условное давление потока

Внимание! 1. В знаменателе стоит fceдла!!!


2. Допускают, что переменные по поверхностям давления заменяют условными постоянными.

Тогда разность условных осредненных давлений, действующих на разные стороны пластины △ Рм.

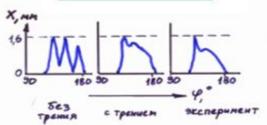

Коэффициент деления потока

При геометрическом подобии тракта клапанов

Значения **р** определяют экспериментально при статических продувках.

Для кольцевых клапанов

Для дисковых клапанов


в - ширина прохода в седле

В полосовых клапанах ρ_P не зависит от жесткости пластины или от высоты подъема в центре (отнесен к площади пластины)

Для прямоточных клапанов

Сила давления потока газа

СИЛЫ ТРЕНИЯ

Danne S. Touber: p=1,6 MRa, no=1450 - /mm R22

Несколько подходов к расчету Ртр:

- 1) Ртр условно постоянна,
- 2) Ртр пропорциональна скорости

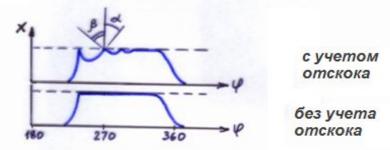
где **С** - коэффициент демпфирования (размерный! - H.c/м)

Упрощенно определяют τ для колебательной системы

У - коэффициент, определяемый экспериментом
 (У = 0,05 ... 0,2)

 собственная частота колебаний недемпфированной системы

отскок пластины


$$\dot{\mathbf{X}}$$
 после удара = $-\dot{\mathbf{X}}$ до удара — абсолютно упругий удар

В действительности

$$\dot{X}$$
после удара = – Θ \dot{X} до удара

- коэффициент востановления

$$\Theta = \frac{|\dot{X}|_{\text{после удара}}}{|\dot{X}|_{\partial o \text{ ydapa}}}, \quad 0 < \Theta < 1$$

Видна необходимость учета отскока


Определяют экспериментально

$$\Theta = \frac{\operatorname{tg} \alpha}{\operatorname{tg} \beta}$$
или
 $\Theta = \sqrt{\frac{h_2}{h_1}}, \quad h_2 - \operatorname{высота отскока}.$

Кольцевые клапаны ⊕ = 0,2 ... 0,3

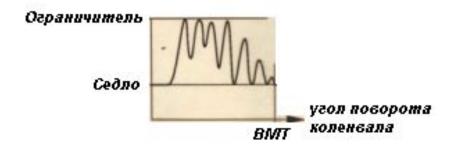
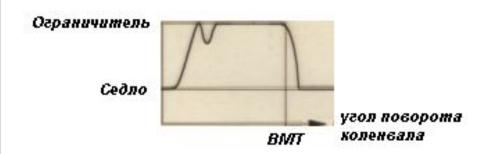
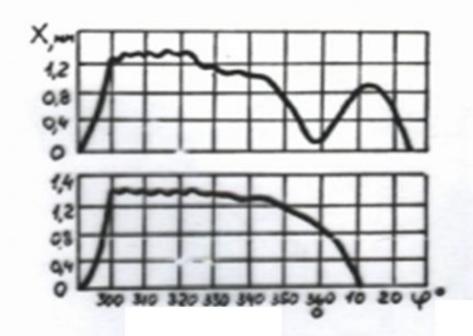
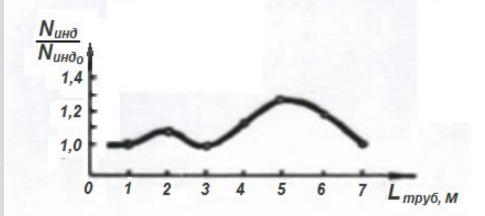

Прямоточные клапаны
$$\Theta_{osp}$$
 = 0,3 , Θ_c = 0,05 ... 0,1

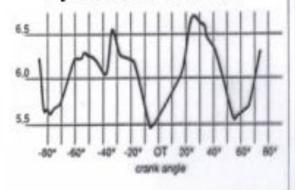
Диаграмма движения пластины всасывающего клапана

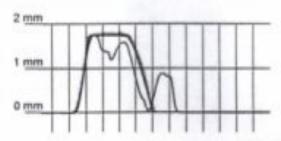


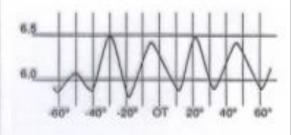

- 1. Нормальная работа клапана
- 2. Небольшое превышение нормы смазки
- 3. Чрезмерное превышение нормы смазки


Флаттер клапана

Запаздывание закрытия клапана




Длина нагнетательного трубопровода 0,82 м

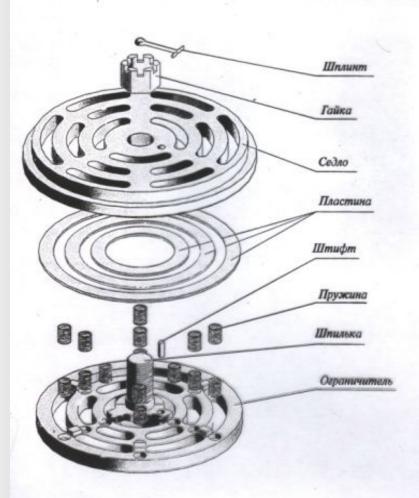

Пульсации давления

Длина нагнетательного трубопровода 0,23 м

Пульсации давления

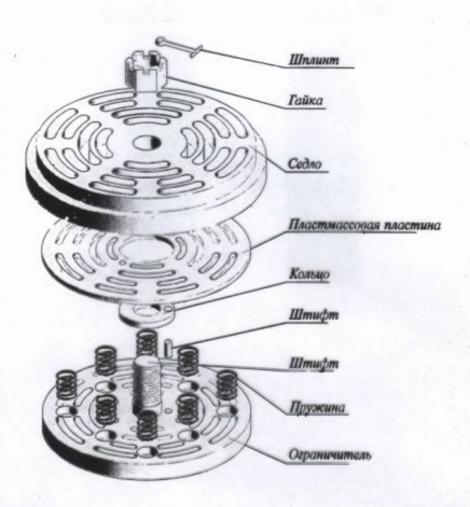
Газодинамические коэффициенты санодеяствующих полностью

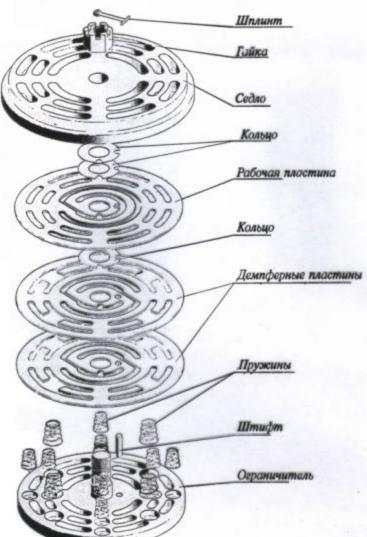
открытых на цилиндр клапанов компрессорных ступеней

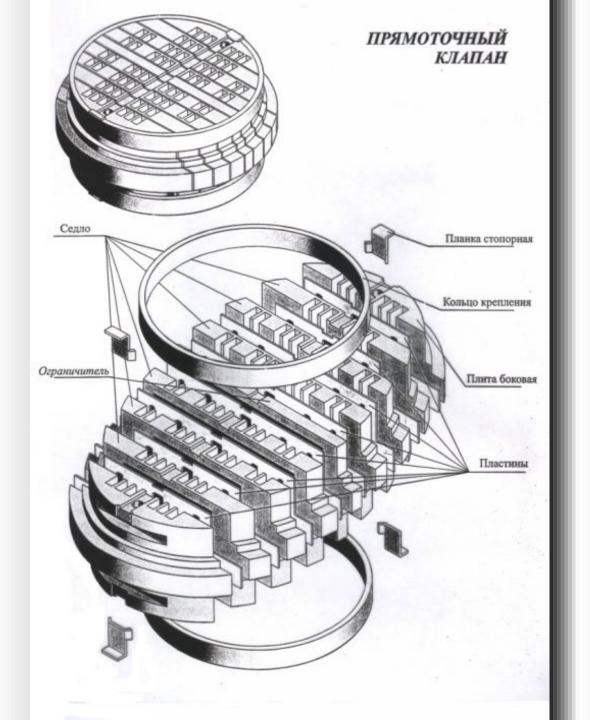

Тип клапана	Коэффициент расхода	потока газа Коэффициент давления
Кольцевоя	$\mu_{KA} = 0.8 \frac{1 + \bar{f}_{ux}^{0.4}}{1 + 4\bar{f}_{ux}}$	$ \rho_{KA} = 1, 1 - (A + 0, 4) \bar{f}_{\mu}^{2} $ A = 1 - односторонняя щель A = 0 - двухсторонняя щель
Пряноточныя	$\mu_{\kappa_A} = 0, 9(1-0, 2\bar{f}_{u_4})$	$\rho_{\kappa n} = 0,62(1-\bar{f}_{uq}^2)$
Ленточныя	$\mu_{KA} = 0,7 \frac{1+4\bar{f}_{ii}}{1+6\bar{f}_{ii}^{1,6}}$	$p_{KA} = 1, 1 - 0, 4 \bar{f}_{u_2}^2$
Сферическия	$M_{KA} = 0,9(1-0,4\bar{f}_{ux})$	/ KA / / / / / / / / / / / / / / / / / /

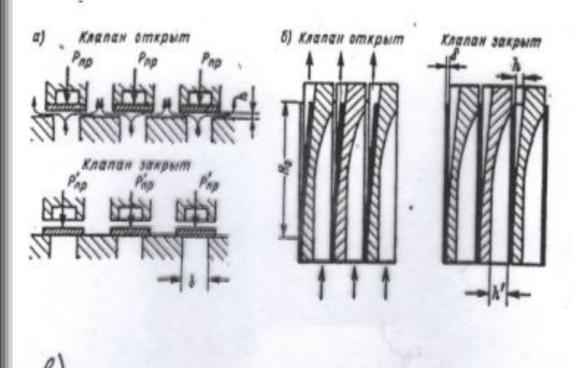
Тип клапана	Сечение щели,	Жесткость пружин (пластин),	Предвари- тельный натяг,	Приведенная насса,	Примечание
	M	H/M	M	КГ	
Кольцевоя	$f_{\mu \zeta} = 2\pi \sum_{i}^{i} (D_{c\rho} h_{\varphi})_{i}$	$C_{np} = \frac{d}{n_{\delta}} \left(\frac{d}{d_{cp}}\right)^{3} 10^{7}$	h _o >0	m = m + 1 m z	D_{cp} - средния диаметр пластин \mathcal{Z}_{n_A} - число
Прямоточныя	$f_{uy} = Z_{nn} \Pi h_{\varphi}$	$C_{nn} = \frac{3E\mathcal{I}}{\ell^3(1-\mu^2)}$	$h_o = 0$	m*=0,25m _{n.x}	пластин
Ленточныя	$f_{\mu} = Z_{nA} \Pi h_{\mu \varphi}$	$C_{ns} = \frac{48EJ}{L^3}$	$h_o = 0$	m*≈0,64mm	 11 - уплотня- емыя периметр d - диаметр витка
Сферическия	$f_{\mu\mu} = \pi d_c h_{\varphi}$	$C_{n\rho} = \frac{d}{n_{\delta}} \left(\frac{d}{d_{c\rho}}\right)^{3} 10^{7}$	h _o > 0	$m^* = m_{n,n} + \frac{1}{3}m_{np}$	пв - число витков ср - диаметр навивки средния

....

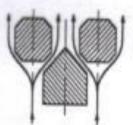


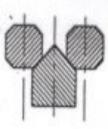

ДИСКОВЫЕ КЛАПАНЫ с пластинасовыми пластинами





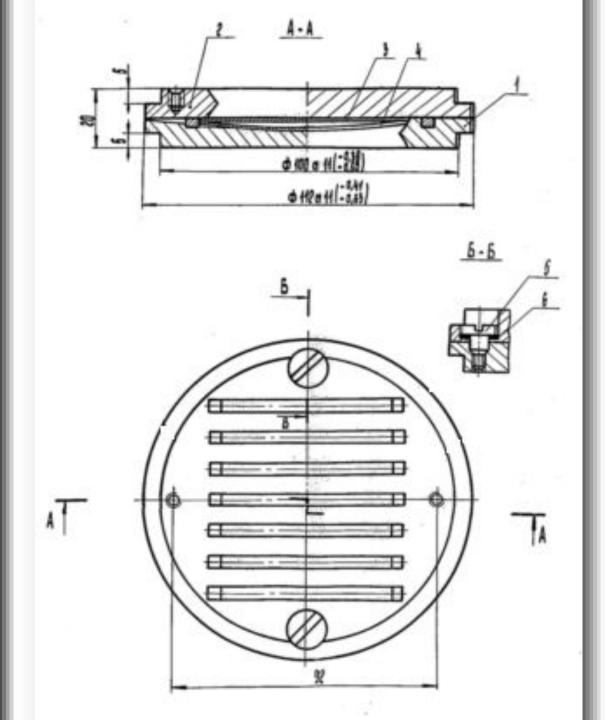
ДИСКОВЫЕ КЛАПАНЫ с металическими пластинами





Клапан открыт

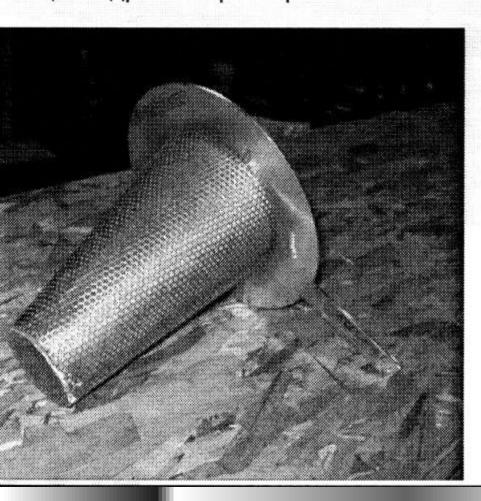
Клапан закрыт

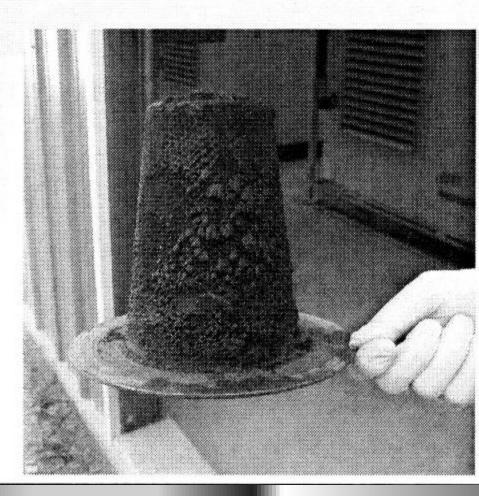


Symbols:

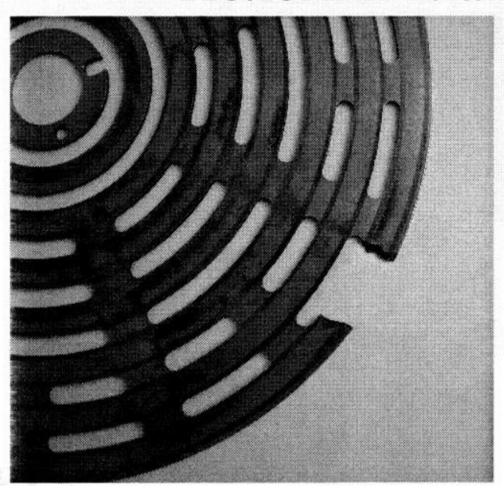
symbol	unit	comment
E	N/m^2	modulus of elasticity
σ	N/m^2	stress
v	m/s	impact velocity
e	kg/m^3	density of material

$$\sigma = \sigma \sqrt{E \varrho} \left[\frac{N}{m^2} \right]$$
 or $\sigma = \frac{\sigma}{\sqrt{E \varrho}} \left[\frac{m}{s} \right]$

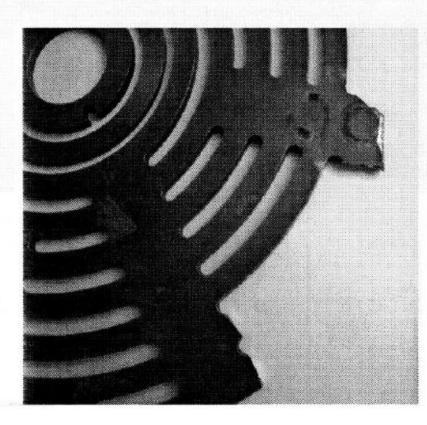

symbol	steel	non-metallic
E	$2.1 \times 10^5 N/mm^2 =$	$1.3 \times 10^3 N/ nm^2 =$
	$=2.1\times10^{11}N/m^2$	$=1.3\times10^9 N/m^2$
Q	$7.85 \times 10^3 kg/m^3$	$1.5 \times 10^{-} kg/m^{3}$
$\sigma_{\rm odm}$	$3 \times 10^{2} N/mm^{2} =$	$2 \times 10 N/\text{cam}^2 =$
	$= 3 \times 10^6 N/m^2$	$= 2 \times 10^7 N/m^2$
Vadm	7.39 m/s	14.32 m/s



Неисправности клапанов


- Пружины
- Жидкости в газе
- Грязь, мехпримеси
- Пульсация давления
- Низкий объемный коэф
- Некачествен. ремонт
- Маслозалипание

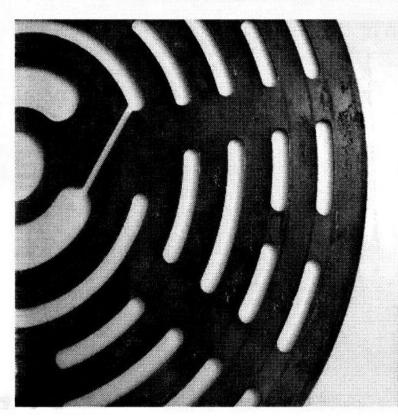
Для защиты цилиндров компрессора от сварного грата и окалины между входным сепаратором и буферной емкостью должен быть установлен конический фильтр-сетка 150 микрон. Степень загрязнения фильтра можно определять по перепаду давления на нем. Несвоевременная очистка фильтра может привести к его разрушению и попаданию его частей в цилиндры компрессора.


Поломки клапанов

Эффект маслозалипания

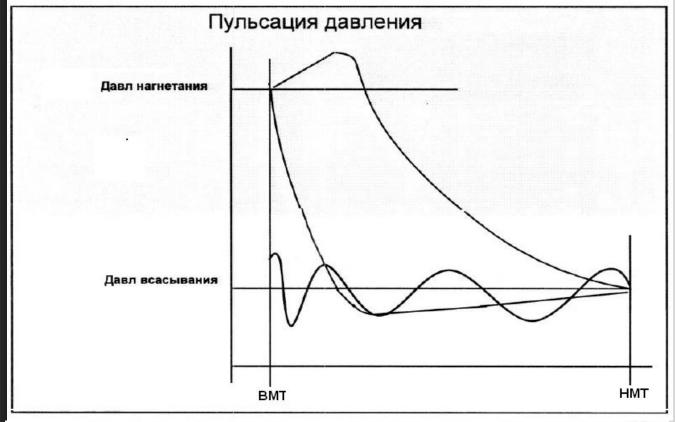
- приводит к
 высокой скорости
 подъема
 металлической
 пластины
- внешняя часть пластины клапана начала разрушаться из-за сильных трещин

Поломки клапанов



Усталость пружин

- приводит к сильным ударам металлической пластины
- внешняя часть пластины клапана разрушается
- происходит запаздывание закрытия


Поломки клапанов

Коррозия

- пластина еще не сломана
- утечки увеличивают температуру газа
- коррозия часто возникает во время стоянки компрессора (а не в работе)

Установка клапанов

ВСЕГДА сначала определите какой клапанвсасывающий или нагнетательный, и после этого установите его в соответствующее гнездо.

ограничителе

Нагнетательный

клапан

Ограничитель в сторону крышки Прокладка на седле

КОНТРОЛЬНЫЕ ВОПРОСЫ К МОДУЛЮ №2

ИСХОДНЫЕ ДАННЫЕ ИЗ ДЗ№1 (подготовить к контрольной работе)

1.Схема компрессора, Ve; $P_{\text{вс}}$; $P_{\text{н}}$; P_{m} ; P_{11} ; P_{21} ; ; P_{12} ; P_{22} ; a_{1} ; a_{2} ; $L_{\text{шатуна}}$; V_{h1} ; V_{h2} ; n_{o} ; S; D_{1} ; D_{2} ; $d_{\text{шт}}$; S/D; C_{m} .

- 2. Масса возвратно-поступательно движущихся частей M_{пс}, кг:
- а) Для компрессоров с цилиндрами простого действия диаметром D и алюминиевыми тронковыми поршнями: таблица 1

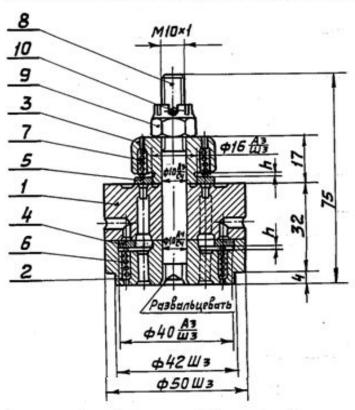
D, MM										300
$M_{\rm пc}$, кг	1,1	1,4	2,2	3,0	4,1	5,4	7,0	8,5	12	17

б) Для компрессоров с блоком цилиндров и алюминиевым дифференциальным поршнем $M_{\text{пс,дифф}}$ определяется из табл.1 по диаметру 1-й ступени D_1 с поправочным коэффициентом 0,8

$$M_{\pi c. дифф} = 0.8*M_{\pi c}$$

- в) Для крейцкопфных компрессоров с цилиндрами двойного действия принять $M_{nc} = 2.8*V_e$, где V_e производительность, м³/мин
- 3. Масса неуравновешенных вращающихся частей Мвр:
- а) один шатун подсоединен к колену вала $M_{\rm BP} = 0.5 * M_{\rm nc};$
- б) два шатуна подсоединены к колену вала $M_{вр} = 0.6* M_{пс}$;
- в) три шатуна подсоединены к колену вала $M_{вр} = 0.7* M_{пс}$;

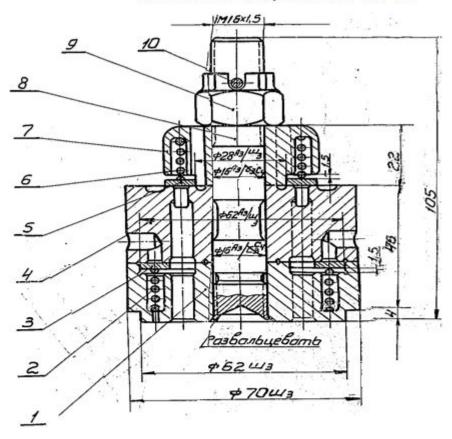
КОНТРОЛЬНЫЕ ВОПРОСЫ ДЛЯ ПРОВЕДЕНИЯ АТТЕСТАЦИИ ПО МОДУЛЮ №2


- 1. Тема "ДИНАМИКА"
- а) Нарисовать схему компрессора с указанием сил и моментов, действующих в механизме движения, с учетом знака;
- б) для одного ряда определить суммарные газовые силы $P_{\mathcal{E}}$ и силы инерции $I_{\Pi \mathcal{E}}$ в ВМТ и НМТ.
- 2. Тема "УРАВНОВЕШИВАНИЕ"

Уравновесить компрессор (вариант из ДЗ№1); определить параметры противовесов; определить оставшиеся неуравновешенными силы инерции и моменты от сил инерции.

3. Тема "РАСЧЕТ КЛАПАНОВ"

Определить эквивалентную площадь клапанов цилиндров первой ступени для подбора стандартизованных клапанов.


Клапан комбинированный КК - 42

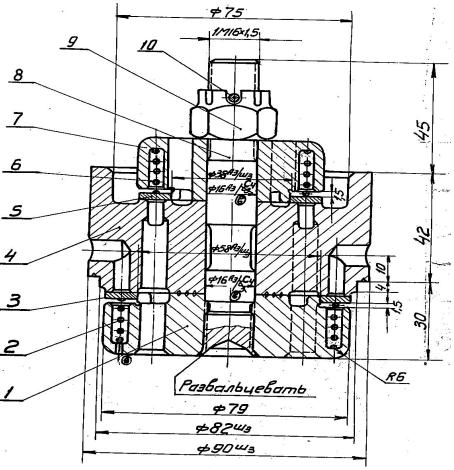
- 1. Максимально допустимый перепад давления 250 кгс/см2
- 2. Площадь прохода в щели: 1. Всасывающ, клапана $\phi = 0$, 48 см² 2. Нагнетат. клапана $\phi = 0$, 43 см²
- 3. Объем вредного пространства клапана V=11,0 cm3

Bbican	па подъема	nnach	пины "h."	
Пласт	ина больш.	Пластина малая		
Номин.	Pakmuyeck.	Номин.	Pakmuyeck.	
MM	MM	MM	MM .	
1,0	0,9,1,22	1,0	0,91,22	

Клапан комбинированный КК - 62

I Максимально допустимый перепад давления - 150 ата.

I Площадь прохода в щели:


1. Всасыв. клапана ф = 1,675 cm2

2. Нагнетат. клапана ф = 2.64 cm 2°

Ш Объем вредного пространства клапана V=28,85°м3

Bisic	ora nogzem	a nac	CTUMBI "
Tinal	TUMO SOJALU	Dear	T/140 MO100
MITT	POKTUYECKOR	HOMUM	PORTUYECKOR
1,4	0,91,22	1.0	09122

Комбинированный клапан КК - 82

I Максимально допустимый перепад давления-60 ama.

II Площадь прохода в щели:

1. Всасыв. клапана ф=6,3 cm²

г. Нагнетат. клапана ф=4.4 cm²

ш Объем вредного простр. клапана. V=58 cm3

Bull	COTA NOOS	ëma	MACTUHE! H
MAG	CTUNG SONN	Mac	TUHO MONOR
HOMEUN	PORTUYECK.	HOMUH.	PORTUYECKOR
MM	MM	MM.	MM
15	14-172	1,5	15-172