

Блок 3 (или 4?): Основы количественной и эволюционной генетики

Яков Цепилов Александрович кбн, нс лаб. Теоретической и Прикладной Функциональной Геномики ИЦиГ СО РАН

Новосибирск - 2017

Зачем?

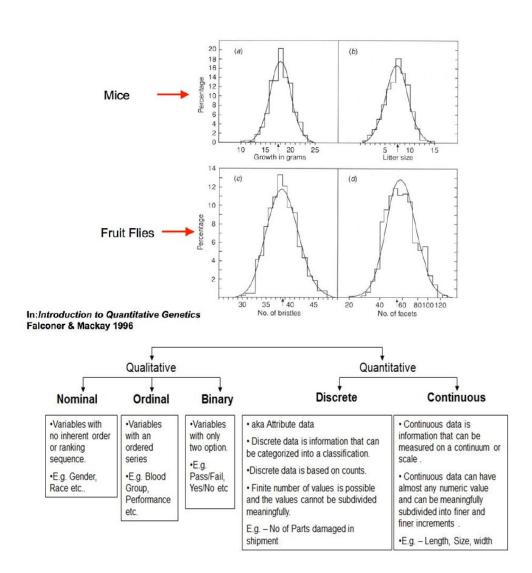
Примерный план на 1 часть (очень примерный)

- Признаки количественные и качественные
 - Полигенная модель
- Наследуемость
 - Как измерять?
- Отбор
- Много признаков (чуть-чуть)
- Что там у человека?
- Геномная селекция

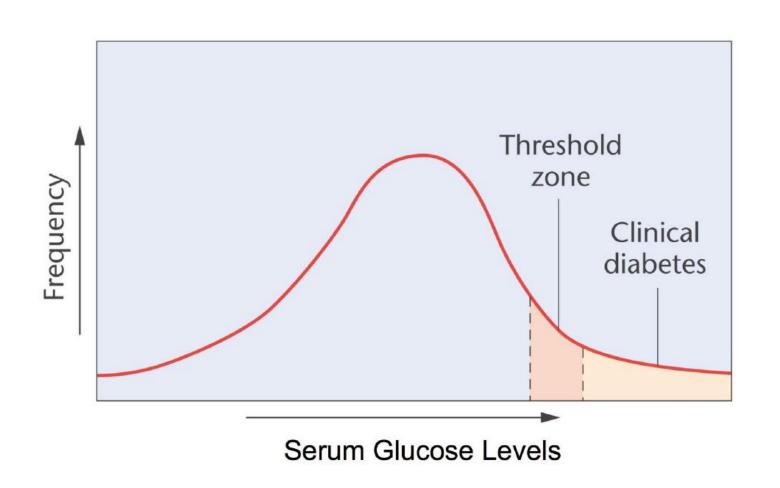
Признаки

- 1) Количественные/Качественные
- Сильно или слабовариативные
- Наследуются или не наследуются

. . .

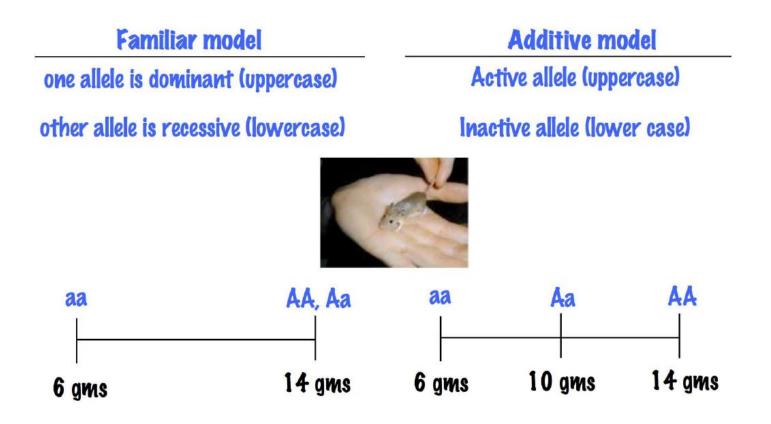


Качественные признаки глубоко в душе количественные



Придадим немного формализма

Самый простой случай: биаллельный полиморфизм

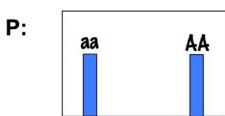


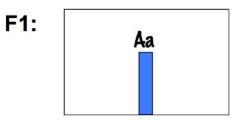
Расщепление по одному гену

If we do a Aa x Aa cross we would expect the following genotypes and phenotypes in the progeny:

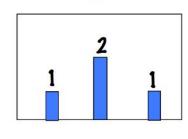
Genotype	Number of active alleles	Frequency	Phenotypic value
AA	2	1/4	μ + 2x
Aa	1	1/2	μ + x
aa	0	1/4	μ

 μ = average phenotype





F2:



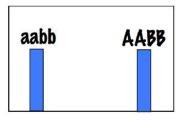
Phenotypic value

Расщепление в F2

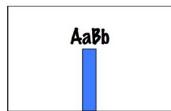
If we do a AaBb x AaBb cross we would expect the following genotypes and phenotypes in the progeny:

Genotype	Number of active alleles	Frequency	Phenotypic value
(1) AABB	4	1/16	μ + 4x
(2) AABb, (2) AaBB	3	4/16	μ + 3x
(4) AaBb + (1) Aabb + (1) aaBB	2	⁶ / ₁₆	μ + 2x
(2) Aabb + (2) aaBb	1	4/16	$\mu + x$
(1) aabb	0	1/16	μ

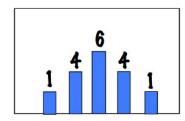
P:



F1:

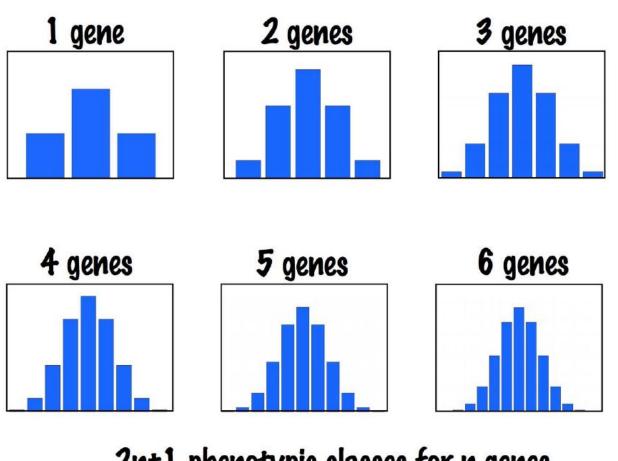


F2:



Phenotypic value

Уходим от дискетности



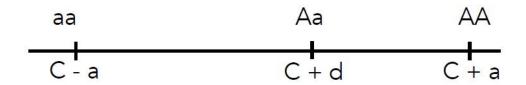
2n+1 phenotypic classes for n genes

Формализация модели 0

$$Y = G + E$$

Формализация модели 1

It will prove very useful to decompose the genotypic value into the difference between homozygotes (2a) and a measure of dominance (d or k = d/a)



Let p = freq(A), q = 1-p = freq(a). Assuming random-mating (Hardy-Weinberg frequencies),

Genotype	аа	Aa	AA
Value	C - a	C + d	C + a
Frequency	q²	2pq	p ²

$$\begin{aligned} \text{Mean} &= q^2(C-a) + 2pq(C+d) + p^2(C+a) \\ \mu_{RM} &= C + a(q-p) + d(2pq) \end{aligned}$$
 Contribution from homozygotes Contribution from heterozygotes

Suppose two inbred lines are crossed. If A is fixed in one population and a in the other, then p=q=1/2

Genotype	аа	Aa	AA
Value	C - a	C + d	C + a
Frequency	1/4	1/2	1/4

$$\label{eq:mean} \begin{aligned} \text{Mean} &= (1/4)(\text{C - a}) + (1/2)(\text{C + d}) + (1/4)(\text{ C + a}) \\ \mu_{\text{RM}} &= \text{C + d/2} \end{aligned}$$

Note that C is the average of the two parental lines, so when d > 0, F_2 exceeds this. Note also that the F_1 exceeds this average by d, so only half of this passed onto F_2 .

Формализация модели 2

- Fisher (1918) decomposed the contribution to the genotypic value from a single locus as $G_{ij} = \mu + \alpha_i + \alpha_j + \delta_{ij}$
 - Here, μ is the mean (a function of p)
 - $-\alpha_i$ are the average effects
 - Hence, $\mu + \alpha_i + \alpha_j$ is the predicted genotypic value given the average effect (over all genotypes) of alleles i and j.
 - The dominance deviation associated with genotype G_{ij} is the difference between its true value and its value predicted from the sum of average effects (essentially a residual)

И вот она

A key concept is the Additive Genetic Value (A) of an individual

$$A (G ij) = \alpha_i + \alpha_j$$

$$A = \sum_{k=1}^{n} (\alpha_i^{(k)} + \alpha_k^{(k)})$$

 $\alpha_i^{(k)}$ = effect of allele i at locus k

A is called the Breeding value or the Additive genetic value

И дисперсии

$$\sigma^{2}(G) = \sum_{k=1}^{n} \sigma^{2}(\alpha_{i}^{(k)} + \alpha_{j}^{(k)}) + \sum_{k=1}^{n} \sigma^{2}(\delta_{ij}^{(k)})$$

Additive Genetic Variance (or simply Additive Variance)

Dominance Genetic Variance (or simply dominance variance)

Hence, total genetic variance = additive + dominance variances,

$$\sigma_G^2 = \sigma_A^2 + \sigma_D^2$$

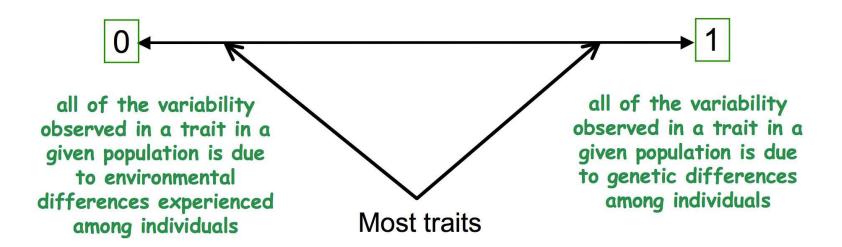
Ключевые концепции

- α_i = average effect of allele i
 - Property of a single allele in a particular population (depends on genetic background)
- A = Additive Genetic Value (A)
 - A = sum (over all loci) of average effects
 - Fraction of G that parents pass along to their offspring
 - Property of an Individual in a particular population
- Var(A) = additive genetic variance
 - Variance in additive genetic values
 - Property of a population

Дальше проще - наследуемость

Heritability: the proportion of phenotypic variation among individuals in a population that is due to genetic variation

$$H^2 = \frac{V_G}{V_p} = \frac{V_G}{V_G + V_E}$$



Да/Нет

- 1) У конкретного индивида очень высокое значение признака, значит его наследуемость очень высокая!
- Наследуемость признака равна 0, значит генетика не важна для этого признака.

3) Наследуемость этой болезни равна 1, значит попытки как-то повлиять на болезнь через среду априори безрезультатны.

Да/Нет

- 1) У конкретного индивида очень высокое значение признака, значит его наследуемость очень высокая! Нет, наследуемость это характеристика популяционная, не индивида!
- 2) Наследуемость признака равна 0, значит генетика не важна для этого признака.

3) Наследуемость этой болезни равна 1, значит попытки как-то повлиять на болезнь через среду априори безрезультатны.

Да/Нет

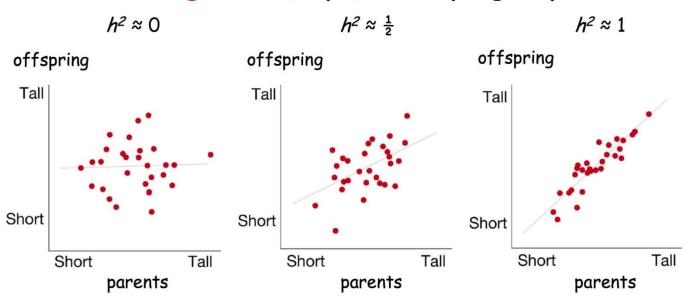
- 1) У конкретного индивида очень высокое значение признака, значит его наследуемость очень высокая! Нет, наследуемость это характеристика популяционная, не индивида!
- 2) Наследуемость признака равна 0, значит генетика не важна для этого признака. Нет, наследуемость ничего не говорит о генетической архитектуре, только о том, какая часть генетической вариативности влияет на признак
- 3) Наследуемость этой болезни равна 1, значит попытки как-то повлиять на болезнь через среду априори безрезультатны.

Да/Нет

- 1) У конкретного индивида очень высокое значение признака, значит его наследуемость очень высокая! Нет, наследуемость это характеристика популяционная, не индивида!
- 2) Наследуемость признака равна 0, значит генетика не важна для этого признака. Нет, наследуемость ничего не говорит о генетической архитектуре, только о том, какая часть генетической вариативности влияет на признак
- 3) Наследуемость этой болезни равна 1, значит попытки как-то повлиять на болезнь через среду априори безрезультатны. Нет, оценки наследуемости в другой среде могут быть совершенно другими

Как оценивать?

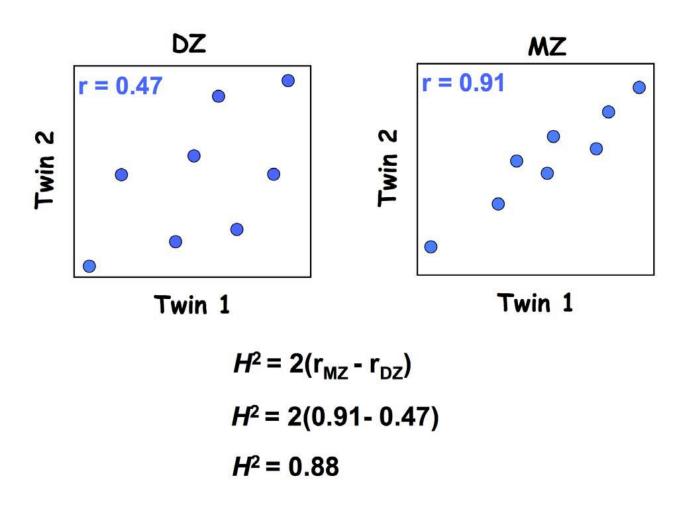
 h^2 is the regression (slope) of offspring on parents



В общем случае: родственная структура – чем больше родственники похожи по определённому фенотипу – тем больше его наследуемость Близнецовые исследования – «лучшие»:

МБ (MZ) – 100% генов одинаковые, дисперсия только средовая ДБ (DZ) – 50% генов общие, вклад в дисперсию признака как от генов, так и от среды

Близнецовые исследования



Аддитивность и неаддитивность

$$V_G = V_A + V_D + V_I$$

Parent-offspring resemblance

Broad-sense heritability: H² = V_G/V_P

Narrow-sense heritability: $h^2 = V_A/V_P$

Отбор

Selection can change the distribution of phenotypes, and we typically measure this by changes in mean

- This is a within-generation change
- Selection can also change the distribution of breeding values
- This is the response to selection, the change in the trait in the next generation (the between generation change

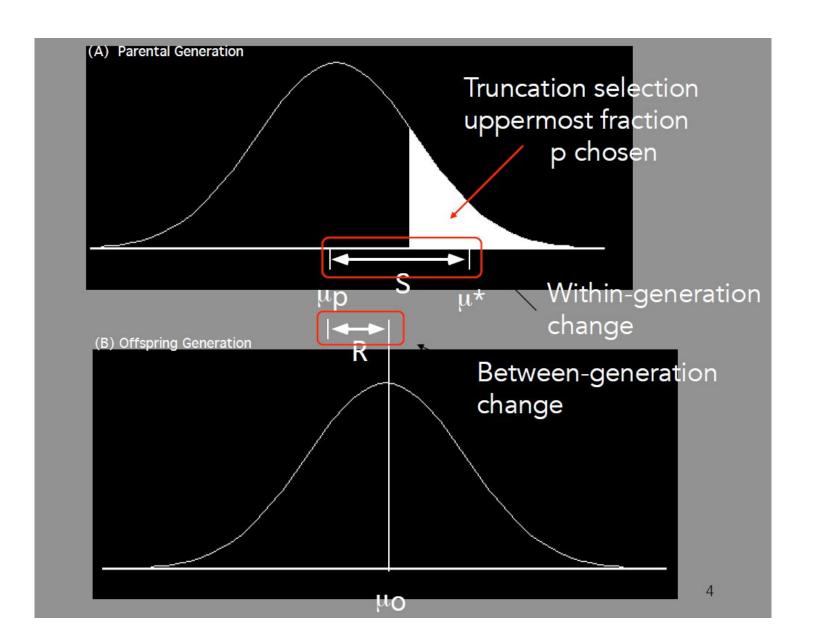
The Selection Differential and the Response to Selection

• The selection differential S measures the within-generation change in the mean

$$S = \mu^* - \mu$$

 The response R is the between-generation change in the mean

$$R(t) = \mu(t+1) - \mu(t)$$



The Breeders' Equation: translating S into R

Recall the regression of offspring value on midparent value

$$y_O = \mu_P + h^2 \left(\frac{P_f + P_m}{2} - \mu_P \right)$$

Averaging over the selected midparents,

$$E[(P_f + P_m)/2] = \mu^*,$$

Likewise, averaging over the regression gives

$$E[y_0 - \mu] = h^2 (\mu * - \mu) = h^2 S$$

Since E[y_o - μ] is the change in the offspring mean, it represents the response to selection, giving:

$$R = h^2 S$$

The Breeders' Equation (Jay Lush)

Средний эффект аллеля

- The average effect α_A of an allele $\bf A$ is defined by the difference between offspring that get allele $\bf A$ and a random offspring.
 - α_A = mean(offspring value given parent transmits A) mean(all offspring)
 - Similar definition for α_a .

Consider the average effect of allele A when a parent is randomlymated to another individual from its population

Suppose parent contributes A

Allele from other parent	Probability	Genotype	Value
А	р	AA	C + a
а	q	Aa	C + d

Mean(A transmitted) =
$$p(C + a) + q(C + d) = C + pa + qd$$

 $\alpha_A = Mean(A transmitted) - \mu = q[a + d(q-p)]$

Now suppose parent contributes a

Allele from other parent	Probability	Genotype	Value
А	р	Aa	C + d
a	9	aa	C - a

Mean(a transmitted) =
$$p(C + d) + q(C - a) = C - qa + pd$$

 $\alpha_a = Mean(a transmitted) - \mu = -p[a + d(q-p)]$

Strictly speaking, the breeders' equation only holds for predicting a single generation of response from an unselected base population

- Practically speaking, the breeders' equation is usually pretty good for 5-10 generations
- The validity for an initial h2 predicting response over several generations depends on:
- – The reliability of the initial h2 estimate
- Absence of environmental change between generations
- The absence of genetic change between the generation in which h2 was estimated and the generation in which selection is applied