Connection Between Regular Expressions and Regular Languages Section 3.2 [Textbook-1]

• for every regular language there is a regular expression

• for every regular expression there is a regular language.

• Regular Expressions denote Regular Languages

$$-\begin{array}{c} - \begin{array}{c} q_{0} \\ q_{1} \end{array} \end{array} \\ (a) \end{array} \\ (b) \end{array} \\ (b) \end{array} \\ (c) \end{array}$$

(a) nfa accepts Ø.

(b) nfa accepts $\{\lambda\}$.

(c) nfa accepts $\{a\}$.

Schematic representation of an nfa accepting L(r).

Automaton for $L(r_1 + r_2)$.

Automaton for $L(r_1r_2)$.

Exercise

Find an nfa that accepts L(r), where

 $r=(a+bb)*(ba*+\lambda)$

for every regular language, there should exist a corresponding regular expression.

- For every regular language there should be an NFA that accepts it.
- From the NFA, we can extract the respective regular expression using $g_{\rm em}^{M}$ and $g_{\rm em}^{M}$ an

From construct the equivalent Generalized Transition Graph in which transition labels are regular expressions.

Reducing the states

Reducing the states

Example (cont.)

Resulting Regular Expression:

r = (bb*a)*bb*(a+b)b*

$$L(r) = L(M) = L$$

In General

Removing states:

In General

The final transition graph:

The resulting regular expression:

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$
$$L(r) = L(M) = L$$

Example

Find a regular expression for the language

$$L = \{w \in \{a, b\}^* : n_a(w) \text{ is even and } n_b(w) \text{ is odd} \}.$$

Steps:

- Build NFA that accepts this language
- Generate the complete GTG by adding edges between each pair of states in the NFA
- Use the described state reduction procedure to reach the final transition graph, then apply the equation in the previous slide to find the regular expression.
- [Note: in Section 2.3, students can find a detailed procedure on this **nfa-to-rex** process]