Connection Between Regular Expressions and Regular Languages

Section 3.2 [Textbook-1]

for every regular language there is a regular expression

 for every regular expression there is a regular language.

• Regular Expressions denote Regular Languages

- (a) nfa accepts Ø.
- (b) nfa accepts $\{\lambda\}$.
- (c) nfa accepts $\{a\}$.

Schematic representation of an nfa accepting L(r).

Automaton for $L(r_1 + r_2)$.

Automaton for $L(r_1r_2)$.

Automaton for $L(r_1^*)$.

Exercise

Find an nfa that accepts L(r), where

$$r=(a+bb)*(ba*+\lambda)$$

for every regular language, there should exist a corresponding regular expression.

- For every regular language there should be an NFA that accepts it.
- From the NFA, we can extract the respective regular expression using g^{M}_{e} eralized transition graphs (GTG)

From construct the equivalent Generalized Transition Graph in which transition labels are regular expressions.

Example

Reducing the states

Reducing the states

Example (cont.)

Resulting Regular Expression:

$$r = (bb*a)*bb*(a+b)b*$$

$$L(r) = L(M) = L$$

In General

Removing states:

In General

The final transition graph:

The resulting regular expression:

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

$$L(r) = L(M) = L$$

Example

Find a regular expression for the language

$$L = \{w \in \{a, b\}^* : n_a(w) \text{ is even and } n_b(w) \text{ is odd}\}.$$

Steps:

- Build NFA that accepts this language
- Generate the complete GTG by adding edges between each pair of states in the NFA
- Use the described state reduction procedure to reach the final transition graph, then apply the equation in the previous slide to find the regular expression.
- [Note: in Section 2.3, students can find a detailed procedure on this nfa-to-rex process]