Основные электрические величины и их единицы измерений

Содержание лекции

- Основные электрические величины и их единицы измерений
- Электрическое сопротивление однородного проводника
- Закон Ома для участка цепи
- Энергия. Плотность энергии
- Закон Джоуля-Ленца
- Контрольные вопросы
- Задачи

Основные электрические величины

- Электрический ток, Ампер
- Напряжение, Вольт
- Сопротивление, Ом
- Проводимость, Сименс
- Емкость, Фарада
- Индуктивность, Генри
- Мощность, Ватт
- Энергия, Джоуль

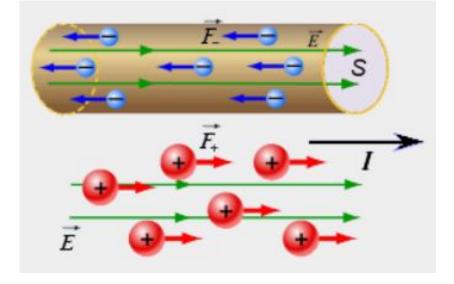
Электрический ток

- Электрическим током называется направленное движение электрических зарядов (ионов в электролитах, электронов в металлах).
- Необходимым условием для протекания электрического тока является замкнутость электрической цепи.
- Сила электрического тока (I) равная отношению заряда (Q), прошедшего через поперечное сечение проводника, к промежутку времени (t), в течение которого шёл ток.

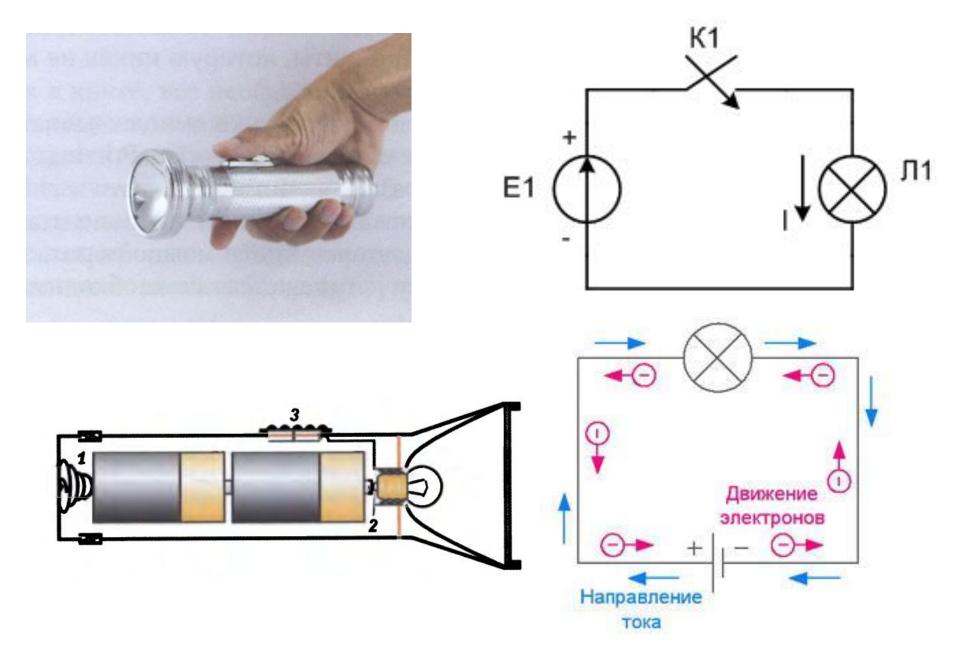
$$I = \frac{Q}{t}$$

• Сила электрического тока измеряется в амперах (A).

Электрический ток


- Производными единицами измерения тока являются:
- 1 килоампер (кА) = 1000 А;
- 1 миллиампер (мА) 0,001 А;
- 1 микроампер (мкА) = 0,000001 А.
- Человек начинает ощущать проходящий через его тело ток в 0,005 А. Ток больше 0,05 А опасен для жизни человека.

Направление тока


За направление электрического

тока условно принято направление движения положительных зарядов. Это правило было установлено задолго до изучения электрона и сохраняется до сих

пор.

Обозначение тока на схеме

Электрическое напряжение

- Электрическим напряжением (U) называется разность потенциалов между двумя точками электрического поля.
- Единицей разности электрических потенциалов является вольт (В).
- Производными единицами измерения напряжения являются:
- 1 киловольт (кВ) = 1000 В;
- 1 милливольт (мВ) = 0,001 В;
- 1 микровольт (мкВ) = 0,00000 1 В.

Электрическое сопротивление

- Электрическое сопротивление свойство проводника препятствовать протеканию по нему электрического тока. Определяется как отношение напряжения на концах проводника к силе тока в нем. Измеряется в омах (Ом).
- Производными единицами измерения сопротивления являются:
- 1 килоОм (кОм) = 1000 Ом;
- 1 мегаОм (МОм) = 1 000 000 Ом;
- 1 миллиОм (мОм) = 0,001 Ом;
- 1 микроОм (мкОм) = 0,00000 1 Ом.
- Электрическое сопротивление тела человека в зависимости от ряда условий колеблется от 2000 до 10 000 Ом.

Электрическое сопротивление

• Для однородного проводника постоянного сечения сопротивление зависит от сечения *S* и длины /

$$R = \rho \cdot \frac{l}{S}$$

где р – удельное сопротивление материала проводника.

- Удельным электрическим сопротивлением (ρ) называется сопротивление проволоки длиной 1 м и сечением 1 мм² при температуре 20 °C.

Удельное сопротивление некоторых металлов

Nº ⊓/∏	Материал проводника	B
1	Серебро	0,016
2	Медь	0,017
3	Алюминий	0,026
4	Вольфрам	0,055
5	Цинк	0,06
6	Латунь	0,07
7	Сталь	0,1
8	Бронза	0,11
9	Свинец	0,21
10	Никелин	0,42
11	Манганин	0,42
12	Константан	0,5
13	Ртуть	0,96
14	Нихром	1,05
15	Ферхаль	1,2

Закон Ома

• Между тремя вышеописанными величинами *I, U* и *R* существует закон Ома для цепи постоянного тока:

Ток в цепи прямо пропорционален величине напряжения в цепи и обратно пропорционален величине сопротивления цепи

I=U/R

Электрическая мощность

- Мощностью (Р) называется величина, характеризующая скорость, с которой происходит преобразование энергии, или скорость, с которой совершается работа.
- Системной единицей электрической мощности в СИ является ватт (Вт). Он равен мощности, при которой за 1 секунду выполняется работа в 1 джоуль:

1Вт = 1Дж/1сек

- Производными единицами измерения электрической мощности являются:
 - 1 киловатт (кВт) = 1000 Вт;
 - 1 мегаватт (МВт) = 1000 кВт = 1 000 000 Вт;
 - 1 милливатт (мВт) = 0,001 Вт;
 - -1 лошадиная сила (л. с.) = 736 Вт = 0,736 кВт.

Формулы расчета мощности

$$P = U \cdot I = \frac{U^2}{R} = I^2 \cdot R$$

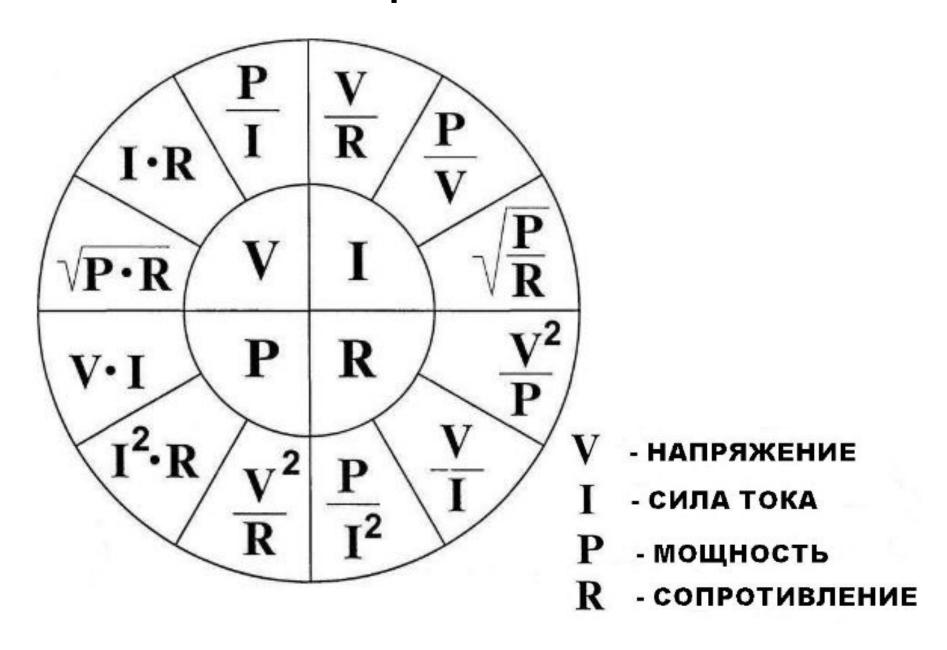
Электрический прибор	Мощность,Вт		
Лампочка фонарика	1		
Сетевой роутер, хаб	1020		
Системный блок ПК	1001700		
Системный блок сервера	2001500		
Монитор для ПК ЭЛТ	15200		
Монитор для ПК ЖК	240		
Лампа люминесцентная бытовая	530		
Лампа накаливания бытовая	25150		
Холодильник бытовой	15700		
Электропылесос	100 3000		
Электрический утюг	3002 000		
Стиральная машина	3502 000		
Электрическая плитка	1 0002 000		
Сварочный аппарат бытовой	1 0005 500		
Двигатель лифта невысокого дома	3 00015 000		
Двигатель трамвая	45 00050 000		
Двигатель электровоза	650 000		
Электродвигатель шахтной подъёмной машины	1 000 0005 000 000		
Электродвигатели прокатного стана	6 000 0009 000 000		

Какую мощность способен развивать человек?

- Развиваемая мощность одного и того же человека в первую очередь зависит от длительности. До 1 минуты (обычно 20-30 секунд) человек может развивать анаэробными «быстрыми» мышцами большую мощность (200-700 Вт в зависимости от тренировки).
- Спортсмен способен расходовать мощность 1 л.с. (735 Вт) в течение 30 с, здоровый нетренированный человек в течение 12 с. Элитные мировые велоспринтеры 1 минуту могут выдать среднюю мощность более 700 Вт с пиком до 1,7 кВт.

Электрическая энергия

- Единицами измерения электрической энергии являются:
 - 1 ватт-секунда (Вт·сек) = 1 Дж = (1 H) (1 м);
 - 1 киловатт-час (кВт·ч) = 3,6 · 10⁶ Вт сек.
- Закон сохранения энергии гласит, что энергию нельзя создать или разрушить, ее можно только преобразовать из одной формы в другую.


Закон Джоуля - Ленца

$$Q = I^2 \cdot R \cdot t$$

где Q – количество теплоты, выделяемое за время t проводником при протекании по нему эл. тока, Дж;

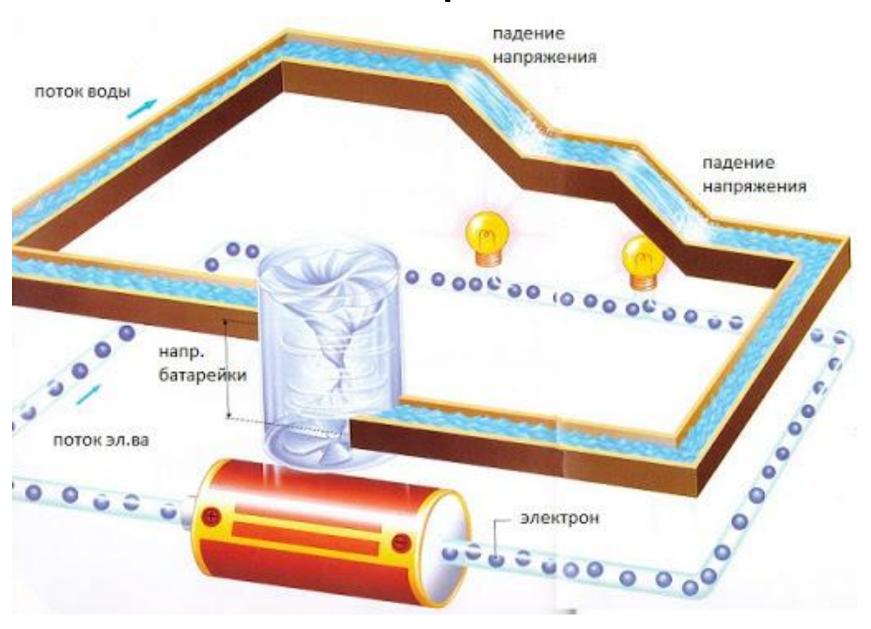
- I сила тока, протекающего по проводнику, А;
- R сопротивление проводника, Ом;
- t время, в течение которого по проводнику течет ток, с.

Связь электрических величин

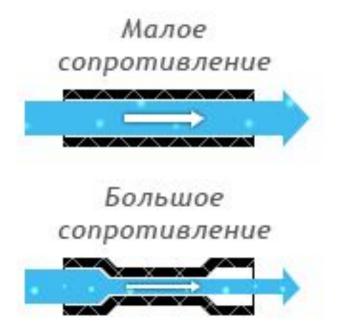
ПРИСТАВКИ ДЛЯ ОБРАЗОВАНИЯ ДЕСЯТИЧНЫХ КРАТНЫХ И ДОЛЬНЫХ ЕДИНИЦ

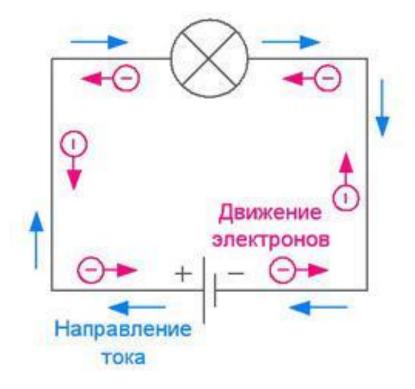
	КРАТНЫЕ			Į	ольные	
приставка	обозначение	множитель		приставка	обозначение	множитель
экса	Э	10 ¹⁸		атто	а	10^{-18}
пета	П	10 ¹⁵	H	фемто	ф	10 ⁻¹⁵
тера	Т	10 ¹²		пико	п	10 ⁻¹²
гига	Г	10 ⁹	Ш	нано	н	10 ⁻⁹
мега	М	10 ⁶	Ш	микро	мк	10^{-6}
кило	к	10 ³	П	милли	М	10 ⁻³
гекто	Г	10 ²		санти	С	10 ⁻²
дека	да	10 ¹		деци	Д	10^{-1}

Степенное представление чисел


В электронике обычно встречаются очень малые и очень большие числа. Степенное представление — это метод, использующий одноразрядные числа и степени десяти для отображения больших и малых чисел. Например, 300 в степенном представлении имеет вид 3×10^2 . Показатель степени показывает количество нулей справа или слева от десятичной запятой в числе. Например:

$$3\times10^3 = 3,0\times10^3 = 3,000 = 3000$$


Если степень отрицательная, десятичная запятая перемещается влево. Например:


$$3\times10^{-6} = 3.0\times10^{-6} = 0.000003$$
, $= 0.000003$

Аналогия электрической цепи

Сопротивление и направление тока

Электрическая емкость

- Электрической емкостью называется способность проводника накапливать электрический заряд.
- Емкость измеряется в фарадах (Ф).

$$1Ф = 1Кл/1В$$

- 1Ф это емкость конденсатора между обкладками которого возникает напряжение 1В при заряде в 1Кл.
- В практике встречаются:

 - $-1H\Phi = 0,000000001\Phi = 10^{-9} \Phi$
 - 1мк Φ = 0,000001 Φ = 10^{-6} Φ

Электрическая индуктивность

- Индуктивность это величина, характеризующая способность контура, по которому протекает электрический ток, создавать и накапливать магнитное поле.
- Индуктивность измеряется в генри.

$$1\Gamma H = (B \cdot c)/A$$

- 1Гн величина, равная ЭДС самоиндукции, возникающей при изменении величины тока в контуре на 1А в течение 1секунды.
- В практике встречаются
 - -1M Γ H=0,001 Γ H
 - -1MK Γ H = 0, 000001 Γ H

Единицы измерения энергии

- Джоули (Дж);
- калории (кал);
- киловатт-часы (кВт-ч).

1 D	3600000 Дж	
1 кВт∙ <u>ч</u>	860 ккал	
1	4187 Дж	
1 ккал	0,00116 кВт∙щ	
	0,278 кВт∙ч	
1 МДж	239 ккал	

Электрическая энергия

- Единицами измерения электрической энергии являются:
 - 1 ватт-секунда (Вт·сек) = 1 Дж = (1 H) (1 м);
 - 1 киловатт-час (кВт·ч) = 3,6 · 10⁶ Вт сек.
- Закон сохранения энергии гласит, что энергию нельзя создать или разрушить, ее можно только преобразовать из одной формы в другую.

тротиловый эквивалент

ЭНЕРГИИ Тротиловый эквивалент — мера энерговыделения высокоэнергетических событий, выраженная в количестве тротила, выделяющем при взрыве равное количество энергии. Удельная энергия взрывного разложения тринитротолуола в зависимости от условий проведения взрыва варьирует в диапазоне 980-1100 кал/г.

> 1 кг ТНТ – 1,28 кВт*ч Мощность царь-бомбы – 58 Мтонн = 58000000000 кг ТНТ

Плотность энергии (удельная энергия)


Топливо	Энергетическая ёмкость (кВт-ч /кг)	
Дрова	2,33-4,32	
Горючий сланец	2,33 - 5,82	
Торф	2,33 – 4,66	
Бурый уголь	2,92 -5,82	
Каменный уголь	ок. 8,15	
Антрацит	9,08 – 9,32	
Нефть	11,63	
Бензин	12,8 кВт-ч/кг, 9,08 кВт-ч/литр	

	Ед. изм.	Удельная теплота сгорания		
Вид топлива		кКал	кВт	МДж
Электроэнергия	1 кВт/ч	864	1,0	3,62
Дизельное топливо (солярка)	1л	10300	11,9	43,12
Мазут	1л	9700	11,2	40,61
Керосин	1л	10400	12,0	43,50
Нефть	1л	10500	12,2	44,00
Бензин	1л	10500	12,2	44,00
Газ природный	1 M ³	8000	9,3	33,50
Газ сжиженный	1 кг	10800	12,5	45,20
Метан	1 M ³	11950	13,8	50,03
Пропан	1 m ³	10885	12,6	45,57
Этилен	1 M ³	11470	13,3	48,02
Водород	1 M ³	28700	33,2	120,00
Уголь каменный (W=10%)	1 кг	6450	7,5	27,00
Уголь бурый (W=3040%)	1 кг	3100	3,6	12,98
Уголь-антрацит	1 кг	6700	7,8	28,05
			1	

Плотность энергии (удельная энергия)

Топливо	Плотность энергии (МДж / кг)	Типовое применение
Дерево	16	Отопление помещений, приготовление пищи
Уголь	24	Электростанции, производство электроэнергии
Этанол	26.8	Бензиновая смесь, спирт, химические продукты
Биодизель	38	Автомобильный двигатель
Сырая нефть	44	Производство нефтепродуктов
Дизельное топливо	45	Дизельный двигатель
Бензин	46	Бензиновые двигатели
Газ	55	Бытовое отопление, производство электроэнергии
Уран-235	76 000 000	Производство электроэнергии с помощью ядерного реактора

Удельная энергия аккумуляторов

Энергия пищи (100г)

Сало 797 ккал 0,927 кВт*ч
Орех 718 ккал 0,835 кВт*ч
Слив. масло 717 ккал 0,834 кВт*ч
Майонез 680 ккал 0,791 кВт*ч
Темн. шоколад 604 ккал 0,702 кВт*ч
Бекон 541 ккал 0,629 кВт*ч

Если бы человек вместо углеводов использовал бензин АИ-92 сколько литров в день ему понадобится? И сколько отдельно на мозг?

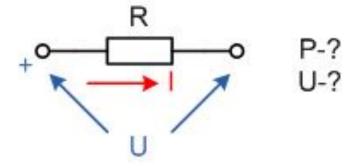
Удельная теплота сгорания килограмма бензина - 42 мегаджоуля или примерно 10 000 килокалорий. Средняя калорийность рациона человека весом 70 кг со средним уровнем физической активности около 2500 килокалорий. 58% этого калоража приходится на энергию, получаемую из углеводов, т.е. 1450 ккал. Таким образом, человеку достаточно потреблять примерно 150 г бензина для обеспечения энергетической потребности за счет углеводов, но речь в вопросе идет о литраже потребляемого бензина. Плотность бензина 0,71 г/мл, 145 г/0,71 г/мл=~205 мл. бензина. 25% этого литража пойдет на питание мозга, то есть, около 50 мл.

Задача

- За сутки котел сжег 30 кг угля калорийностью 28000 кДж/кг. КПД котла 80%.
- Узнать сколько кВт энергии произвел котел, и с какой мощностью он работал?

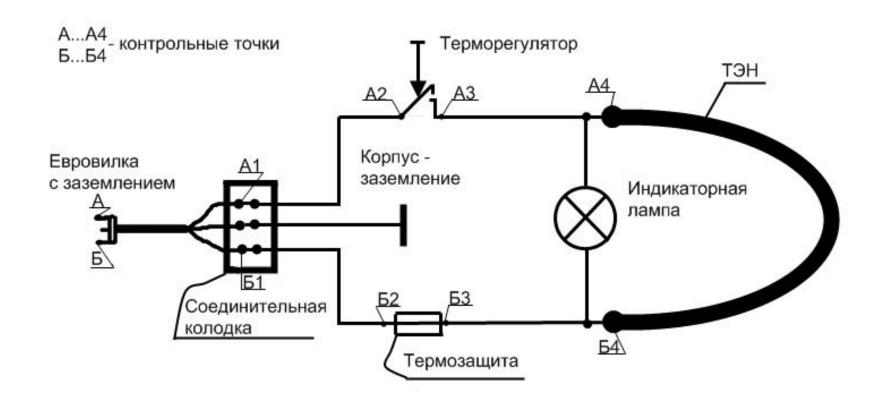
Решение:

- 1) 30 кг x 28000 кДж/кг = 840.000 кДж * 80% = 672000 кДж/ 3600 с = 186,7 кВт/ч
- 2) 186,7 kBT/4 / 24 4 = 7,8 kBT
 - **Ответ:** Наш котел на протяжении суток произвел 186,7 кВт/ч энергии, работая на средней мощности 7,8 кВт.


Контрольные вопросы

- 1. Основные электрические величины и единицы их измерения.
- 2. Необходимые условия возникновения электрического тока.
- 3. Направление тока.
- 4. Закон Ома. Формулы мощности.
- 5. Удельное сопротивление материалов.
- 6. Сопротивление проволоки известного сечения.
- 7. Энергия. Единицы измерения энергии.
- 8. Удельная энергия различных источников.
- 9. Тротиловый эквивалент энергии.
- Какую мощность способен развивать человек?

Задача 1.

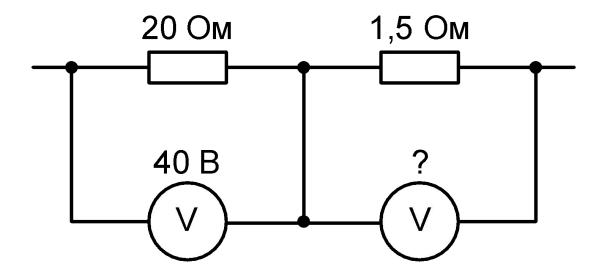

Через резистор R=10 Ом протекает ток I=2 A. Определить:

- 1) Мощность, подведенную к резистору.
- 2) Напряжение на резисторе.

Задача 2.

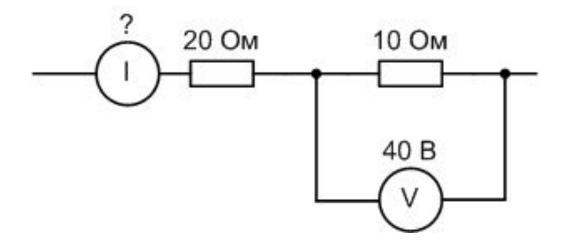
Утюг, включенный в сеть 220 В, потребляет ток 1,2 А. Определите сопротивление и мощность утюга.

Задача 3.

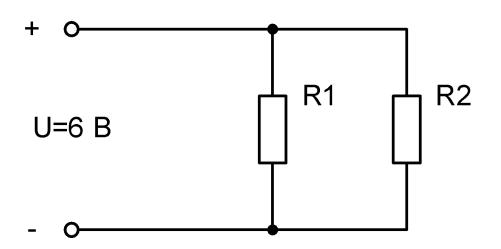

Рассчитать силу тока, проходящего по медному проводу длиной 100 м, площадью поперечного сечения 0,5 мм², если к концам провода приложено напряжение 6,8 В.

Задача 4.

Ток, потребляемый электродвигателем, присоединенным к сети 220 В, составлял 10 А в течение 15 минут. Определить энергию, потребленную двигателем в кВт*ч.


Задача 5.

Что покажет вольтметр в схеме?


Задача 6.

Что покажет амперметр в схеме?

Задача 7.

Два резистора сопротивлением R1=5 Ом и R2=30 Ом включены, как показано на схеме, к зажимам источника напряжения 6 В. Найдите силу тока во всех ветвях схемы.

Задача 8.

- По вольфрамовой проволоке протекает ток 0,05 А. Напряжение, под которым находится данный проводник, составляет 5 В. Найти площадь поперечного сечения проволоки.
- Справка: удельное сопротивление вольфрама составляет 0,055 Ом·мм²/м.

Задача 9.

Определить длину мотка медной проволоки не разматывая его. Диаметр проволоки d=0,25 мм, сопротивление R=45 Ом.

Задача 10.

Рассчитать, какой д.б. емкость велосипедного аккумулятора напряжением 48 В для поездки на скорости 20 км/ч на

расстояни

Скорость, км/ч	Мощность, Вт
20	70
25	115
30	181
35	275
40	389
45	540
50	725

Задача 11.

Сколько воды можно вскипятить 1 литром бензина?

- В 1 литре бензина содержится 33 МДж энергии
- Теплоемкость воды $c = 4200 \, \text{Дж/(кг*градус)}$

Задача 12.

Сколько времени потребуется для нагрева 1 литра воды электрочайником мощностью 2 кВт?

- Теплоемкость воды с = 4200 Дж/(кг*градус)
- Для нагрева 1 литра воды от 20 до 100 ^оС необходимо затратить 0,093 кВт*ч

Задача 13.

Сколько воды нужно поднять на высоту 10 метров, чтобы ее потенциальная энергия равнялась энергии 1 литра бензина?