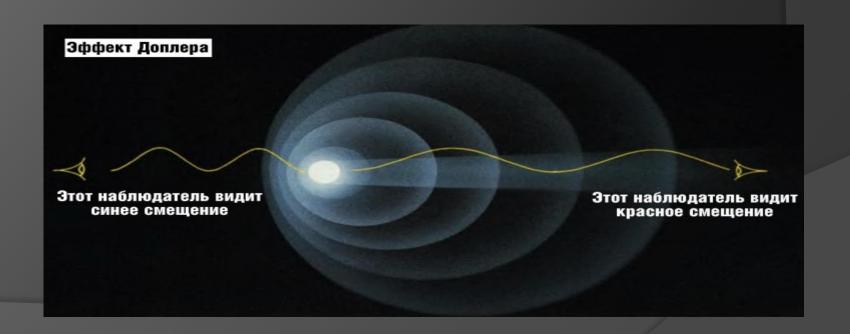

« МЕТОДЫ ПОИСКА ЭКЗОПЛАНЕТ.»

Презентацию подготовила Студентка группы ЗИО 19 1/9 ГБПОУ РК «КПК» Шурупова Дарья Проверил :Лазарев А.И.

Планеты, обращающиеся около других звёзд, являются источниками очень слабого света в сравнении с родительской звездой, поэтому прямое наблюдение и обнаружение экзопланет является довольно сложной задачей. Помимо значительной сложности обнаружения такого слабого источника света, возникает дополнительная проблема, связанная с тем, что яркость родительской звезды на много порядков превышает звёздную величину планеты, светящуюся отражённым от родительской звезды светом, и тем самым делает оптические наблюдения экзопланет сверхсложными для наблюдений. Из-за этого только около 5% от всех экзопланет, обнаруженных к ноябрю 2011 года, наблюдались прямым методом. Все остальные планеты найдены косвенными методами, заключающимися в обнаружении влияния планеты на окружающие тела



Основные методы

Метод Доллера

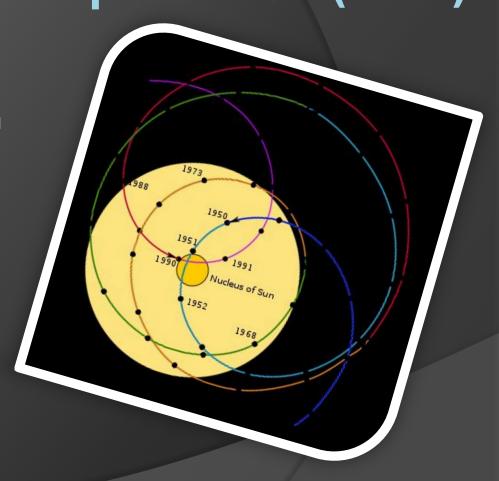
Метод Доплера (радиальных скоростей, лучевых скоростей) — метод обнаружения экзопланет, заключающийся в спектрометрическом измерении радиальной скорости звезды. Звезда, обладающая планетной системой, будет двигаться по своей собственной небольшой орбите в ответ на притяжение планеты. Это в свою очередь приведёт к изменению скорости, с которой звезда движется по направлению к Земле и от неё (то есть к изменению в радиальной скорости звезды по отношению к Земле). Такая радиальная скорость звезды может быть вычислена из смещения в спектральных линиях, вызванных эффектом Доплера.

Скорость звезды вокруг общего центра масс гораздо меньше, чем у планеты, поскольку радиус её орбиты очень мал. Тем не менее скорость звезды от 1 м/с и выше может определяться современными спектрометрами: HARPS (англ. High Accuracy Radial Velocity Planet Searcher), установленном на телескопе ESO в обсерватории Ла-Силья или спектрометром HIRES на телескопе обсерватории Кека. Простой и недорогой метод для измерения радиальной скорости — это «внешне дисперсионная интерферометрия».

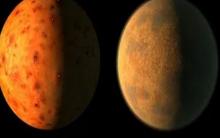


Метод периодических пульсаций

Метод периодических пульсаций — метод обнаружения экзопланет около пульсаров, основанный на выявлении изменений в регулярности импульсов. Пульсар — космический источник радио-(радиопульсар), оптического (оптический пульсар), рентгеновского (рентгеновский пульсар) и/или гамма-(гамма-пульсар) излучений, приходящих на Землю в виде периодических всплесков (импульсов). Особенностью радиопульсаров является очень точное и регулярное излучение импульсов, зависящих от скорости вращения звезды. Собственное вращение пульсара изменяется чрезвычайно медленно, поэтому его можно считать постоянной величиной, и небольшие аномалии в периодичности его радиоимпульсов могут использоваться для отслеживания собственного движения пульсара. Поскольку у пульсара, обладающего планетной системой, будет наблюдаться небольшое движение по своей собственной орбите (аналогично обычной звезде), то расчёты, основанные на наблюдении периодичности импульсов, могут выявить параметры орбиты пульсара.

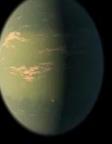

Транзитный метод

Транзитный метод (метод транзитов) — метод поиска экзопланет, основанный на обнаружении падения светимости звезды во время прохождения планеты перед её диском. Этот фотометрический метод позволяет определить радиус планеты, в то время как приведённые ранее методы позволяют получить информацию о массе планеты. Если планета проходит перед диском звезды, то её наблюдаемая светимость немного падает, и эта величина зависит от относительных размеров звезды и планеты. К примеру, при транзите планеты HD 209458, звезда тускнеет на 1,7 %.


Метод вариации времени транзитов (TTV) и метод вариации продолжительности транзитов (TDV)

Если планета найдена транзитным методом, то отклонения в периодичности наблюдаемых транзитов позволяют обнаружить в системе дополнительные планеты. При этом точность метода довольно высока и позволяет найти планеты размером с Землю.Впервые нетранзитная планета с использованием TTV-метода была обнаружена в результате анализа данных с телескопа Кеплер: изменение периодичности транзитов планеты Кеплер-19 b составляло около 5 минут с периодом в 300 дней, что свидетельствовало о наличии второй планеты, Kepler-19 c c периодом, являющимся почти рациональным кратным к периоду транзитный планеты.


Система


TRAPPIST-1

Период обращения	
дни	
Расстояние до звездь	
астрономические едини	ЩЬ

Расстояние до звезды астрономические единицы(а.е)	0.011	(a.e)
Радиус планеты	1.09	R 36

no	сравнению	с Землей
Масса п	ланеты	

по сравнению с Землей

b	С
1.51 дни	2.42 дни
0.011 (a.e)	0.015 (a.e)
1.09 R _{Земли}	1.06 R _{Земли}
0.85 М _{Земли}	1.38 М _{Земли}

e
6.10 дни
0.028 (a.e)
0.92 R _{Земли}
0.62 М _{Земли}

9.21 дни $\boldsymbol{0.037} \textit{(a.e)}$ **1.04** R_{Земли} **0.68** М _{Земли}

g **12.35** дни $0.045 \it (a.e)$ **1.13** R_{Земли} **1.34** _{Земли}

0.76 R_{Земли}

Солнечная система

дни

(a.e)

R_{Земли}

М_{Земли}

Mars
686.98 дни
1.524 (a.e)
0.53 R _{Зем}
0.11 M _{3e}

