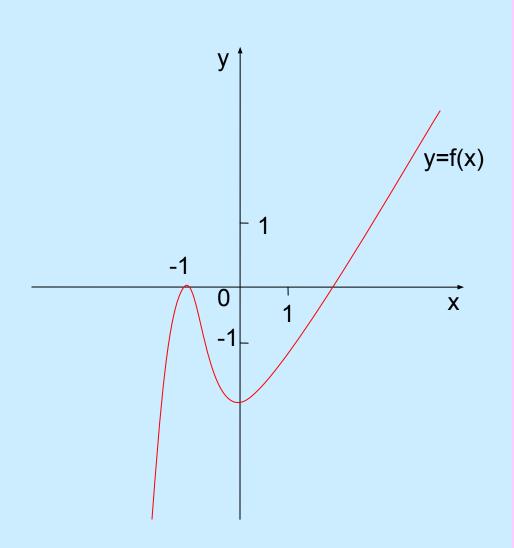


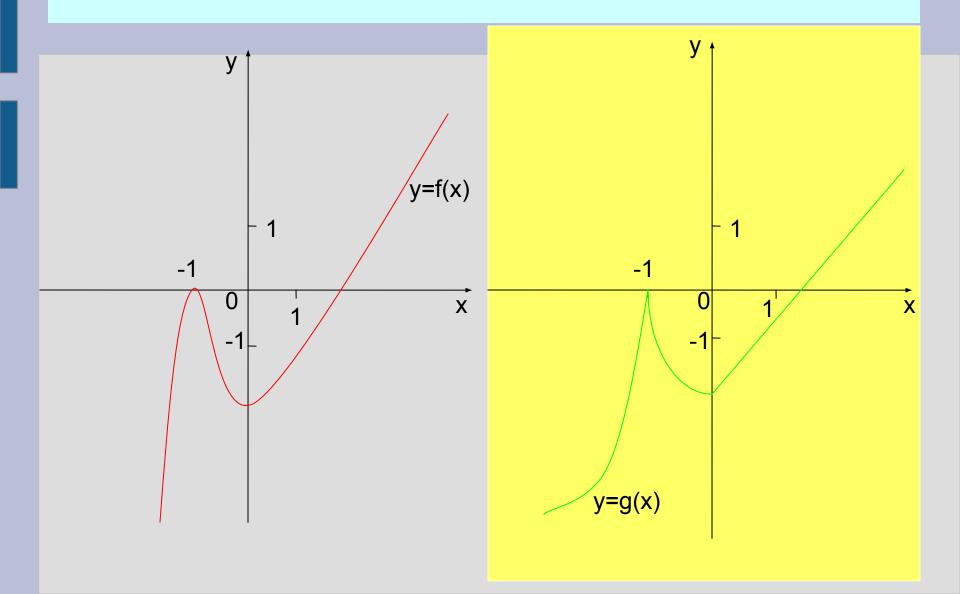
- •Рассмотрите график некоторой функции, изображенный на данном рисунке.
- •Какие точки графика обращают на себя особое внимание? Почему?
- •Сформулируйте свои выводы о поведении функции в этих точках графика.



Выводы:

некоторые точки графика определяют его структуру: 1)в одних точках графика функция достигает значение большее по сравнению с другими близлежащими точками, а в других – меньшее; 2) в этих точках графика происходит изменение характера монотонности функции: слева от такой точки графика функция убывает, а справа – возрастает (или наоборот); 3) касательная в такой точке графика параллельна оси ОХ.

Сравните графики некоторых функций, изображенных на данных рисунках. Какие точки графиков обращают на себя особое внимание? Почему? Сформулируйте свои выводы о поведении функции в этих точках графика.

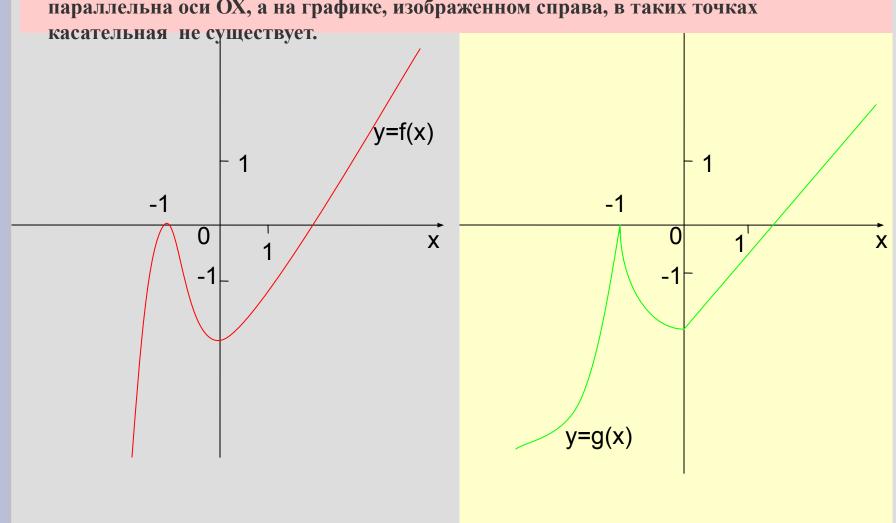


Сравнив графики функций, изображенные на данных рисунках, вы сделали следующие выводы:

1. эти графики имеют одни и те же уникальные точки, в которых функция достигает значение большее или меньшее по сравнению с другими близлежащими точками;

2. происходит изменение характера монотонности функции: слева от такой точки графика функция убывает, а с другой – возрастает (или наоборот);

3. на графике, изображенном слева, касательная в таких точках графика параллельна оси ОХ, а на графике, изображенном справа, в таких точках



Точки экстремума

- Точка x_0 называется *точкой максимума функции* f(x), если существует такая окрестность точки x_0 , что для всех x (кроме x_0) из этой окрестности выполняется неравенство $f(x) < f(x_0)$.
- <u>Обозначается</u>: X_{max} , а значение функции в этой точке Y_{max} (не путать с $Y_{\text{наиб}}$).
- Точка x_0 называется *точкой минимума функции* f(x), если существует такая окрестность точки x_0 , что для всех x (кроме x_0) из этой окрестности выполняется неравенство $f(x) > f(x_0)$.
- <u>Обозначается</u>: X_{min} , а значение функции в этой точке Y_{min} (не путать с $Y_{\text{наим}}$).
- Точки минимума и точки максимума вместе называются *точками экстремума*.

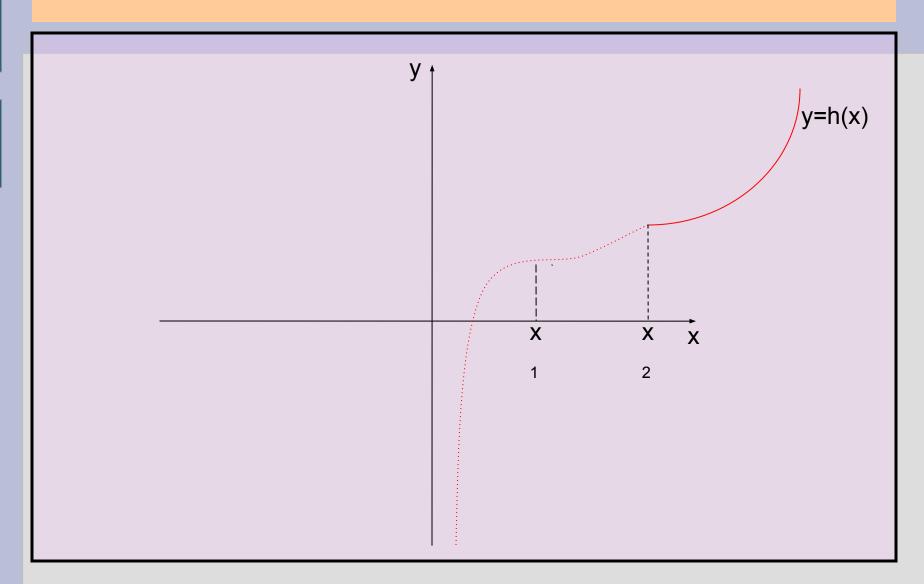
В курсе математического анализа справедливо следующее утверждение:

Для того чтобы точка x_0 была точкой экстремума функции f(x), *необходимо*, чтобы эта точка была критической точкой данной функции.

Верно ли обратное утверждение:

если x= x₀ критическая точка функции f(x), то в этой точке функция имеет экстремум?

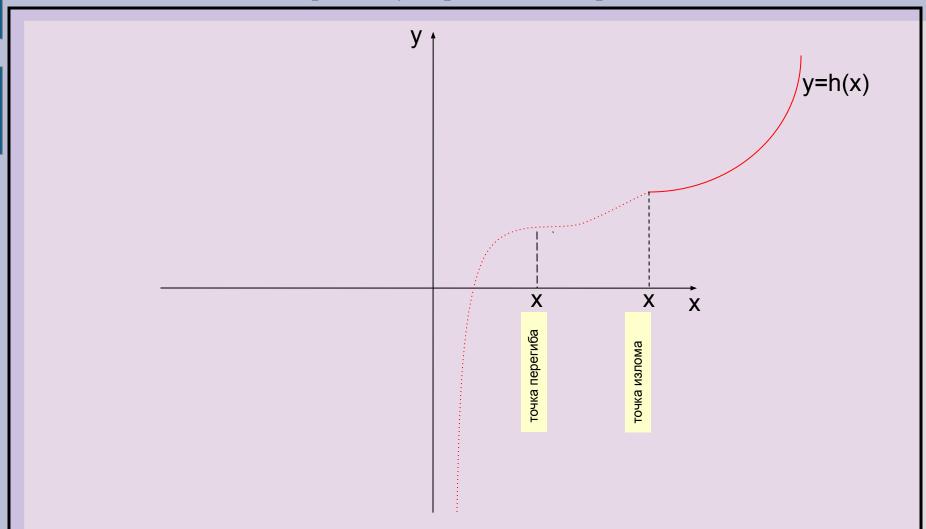
Проанализируйте график данной функции. Какие точки графика обращают на себя особое внимание? Почему? Сформулируйте свои выводы о поведении функции в этих точках графика



Вывод:

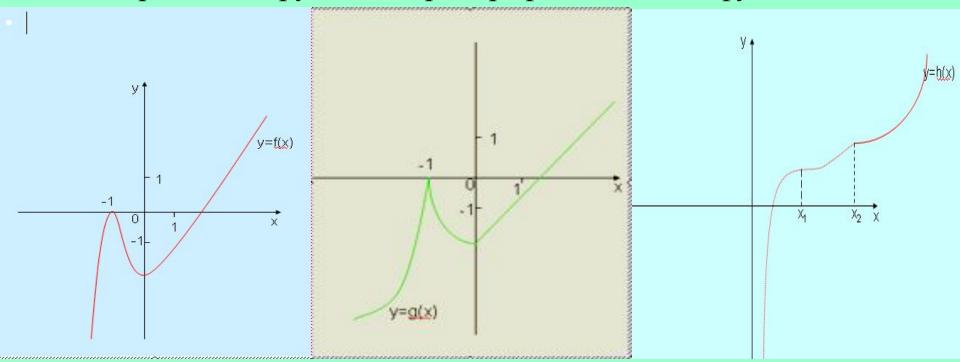
У данной функции, как и у предыдущих функций, есть точки в которых она либо равна 0, либо не существует, но ни одна из них не является точкой экстремума.

Обратное утверждение не верно.



При каких условиях критическая точка будет является точкой экстремума?

Проанализируйте еще раз графики данных функций,



обращая внимание на характер монотонности каждой функции при переходе через ее критические точки и сделайте вывод при каких условиях критическая точка функции будет точкой экстремума.

Вы пришли к выводу:

если при переходе через критическую точку графика монотонность функции изменяется, (т.е. меняет свой знак на противоположный), то такая критическая точка будет являться точкой экстремума;

если при переходе через критическую точку графика монотонность функции не изменяется, (т.е. не меняет свой знак на противоположный), то такая критическая точка не будет являться точкой экстремума.