Information \&
 Communications Technologies INF-106

Instructor: Assyl Abilakim

Number Systems

0123456789

Binary numbers and their decimal equivalents

1-Bit Binary Numbers	2-Bit Binary Numbers	3-Bit Binary Numbers	4-Bit Binary Numbers	Decimal Equivalents
0	00	000	0000	0
1	01	001	0001	1
	10	010	0010	2
	11	011	0011	3
		100	0100	4
		101	0101	5
		110	0110	6
		111	0111	7
			1000	8
			1001	9
			1010	10
			1011	11
			1100	12
			1101	13
			1110	14
			1111	15

- Decimal to binary conversion

For example, 22_{10}
Divide number by 2.
Reminder goes each columns.
$22 / 2=11$,
0
$11 / 2=5$ reminder 1

5/2=2 remainder 1
10110_{2}
$2 / 2=1$,
0
$1 / 2=0$, reminder 1 .

- Binary to decimal conversion
$10110_{2}=1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}=22_{10}$

Decimal to octal conversion

Example, 22_{10}
Divide number by 8 .
$22 / 8=16$, reminder 6
$2 / 8=0$, reminder 2

Octal to decimal conversion

$$
26_{8}=2 \times 8^{1}+6 \times 8^{0}=22_{10}
$$

Hexadecimal number system

Hexadecimal Digit	Decimal Equivalent	Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	9	1000
A	10	1001
B	11	1010
C	12	1011
D	13	1100
E	14	1101
F	15	1110
		1111

- Decimal to hexadecimal conversion
22_{10}
Divide the number by 16 .
22/16=1 reminder 6
1/16=0 reminder 1

- Hexadecimal to decimal conversion

$$
16_{16}=1 \times 16^{1}+6 \times 16^{0}=22_{10}
$$

- Hexadecimal to binary conversion

Conversion between hexadecimal and binary is easy because each hexadecimal digit directly corresponds to four binary digits.

$$
\begin{aligned}
& 16_{16} \\
& 1_{16}=0001_{10} \\
& 6_{16}=0110_{10}
\end{aligned} \square \quad 10110_{2}
$$

- Binary to hexadecimal conversion 10110_{2}

Start reading from the right.
The four least significant bits are

$$
\begin{aligned}
& 0110_{2}=6_{16} \\
& 0001_{2}=1_{16}
\end{aligned} \square 16_{16}
$$

Practice
-4810 to binary

- 1910 to binary
- 100102 to decimal
- 111002 to decimal
- 6416 to decimal
- 2E16 to decimal

50u
SULEYMAN DEMIREL
II N I VFRSITY
IINIVFRSITY

Answers

-4810 $=110000_{2}$

- $1910=100112$
- $100102=1810$
- $111002=2810$
- $6416=10010$
- $2 \mathrm{E}_{16}=4610$

Home work

- Laboratory work 1

50 Sulu
Questions?

