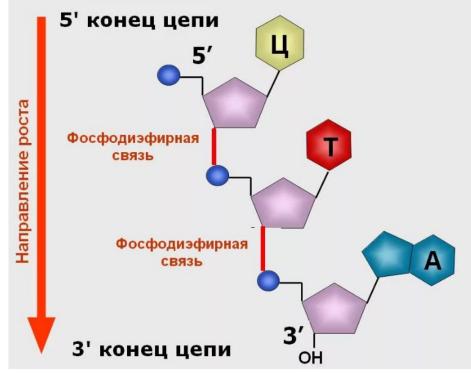
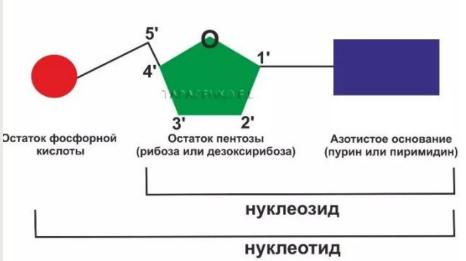
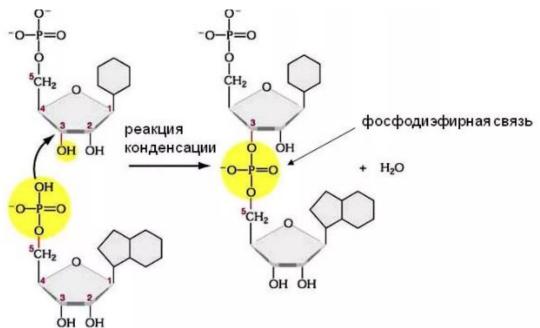

Сеченовка экзамен

A	Ь	В
3	1	2

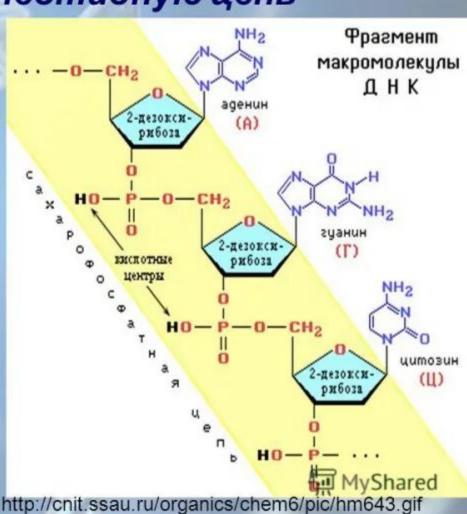
А Укажите локализацию макромолекулы под номером 1 в соматической клетке человека		Б Какое количество триплетов входит в состав молекулы под номером 1		В Сравните молекулы под номерами 2 и 3. Назовите процесс под номером 6	
1	Полисома	1	Пять	1	Репликация
2	Эндоплазматичес кая сеть	2	Пятнадцать	2	Транскрипция
3	Нуклеоплазма	3	Четыре	3	Репарация
4	Центриоль	4	Четырнадцать	4	Трансляция
				5	Модификация






	A	Б			В	
Укажите локализацию молекулы под номером 1 в клетке		Выберите вид химической связи, объединяющей мономеры в молекуле 2		п	равните молекулы од номерами 1 и 4. Выберите вид иенений, которые в	
типе	эпителия человека				них произошли.	
1	Рибосома	1	Пептидная	1	Геномные мутации	
2	Комплекс	2	Водородная	2	Хромосомные	
	Гольджи		100000000000000000000000000000000000000		мутации	
3	Нуклеоплазма	3	Фосфодиэфирная	3	Генные мутации	
4	Цитоплазма	4	Ионная	4	Модификации	

A	Б	В
3	3	3


Строение нуклеотида

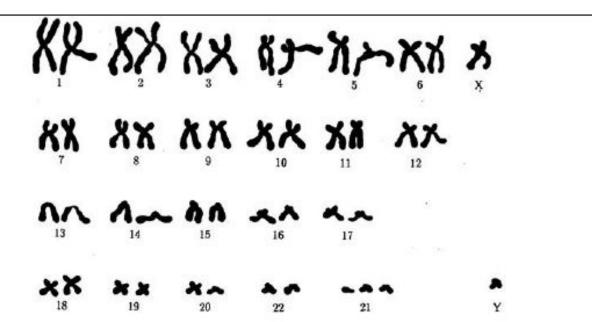
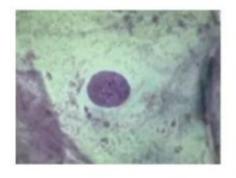
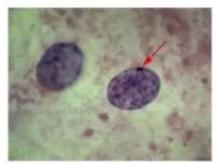


Схема соединения нуклеотидов в полинуклеотидную цепь

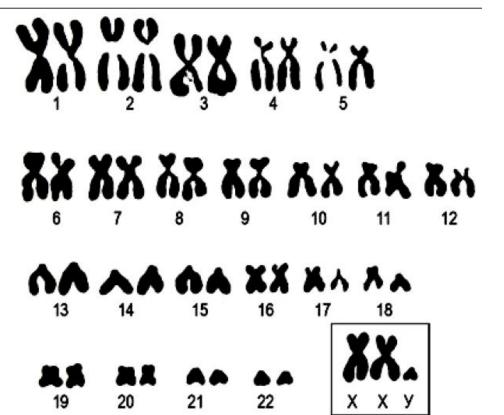
❖ Соединение нуклеотидов в макромолекулу нуклеиновой кислоты происходит путём взаимодействия фосфата одного нуклеотида с гидроксилом другого так, что между ними устанавливается фосфодиэфирная связь. [1]

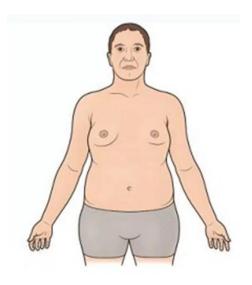

A	Б	В
3	1	4



Синдром Дауна (врожденная идиотия):

A		Б	В Выберите количество телец Барра характерное для индивида с таким кариотипом		
Выберите характеристику кариотипа человека		Какие изменения иллюстрирует данный кариотип			
1	Нормальный кариотип мужчины	1	Увеличение числа аутосом	1	Одно
2	Нормальный кариотип женщины	2	Увеличение числа половых хромосом	2	Два
3	Измененный кариотип мужчины	3	Уменьшение числа аутосом	3	Три
4	Измененный кариотип женщины	4	Уменьшение числа половых хромосом	4	Ноль
		5	Нормальное число аутосом и половых хромосом		

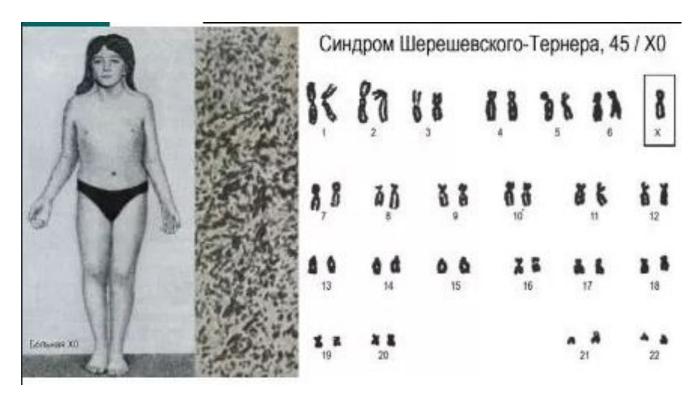

Кариотип — 47 хромосом; 21 пара имеет вид XXX.
Тип мутации — геномная; трисомия.
Встречается у новорожденных с частотой 1:700-800



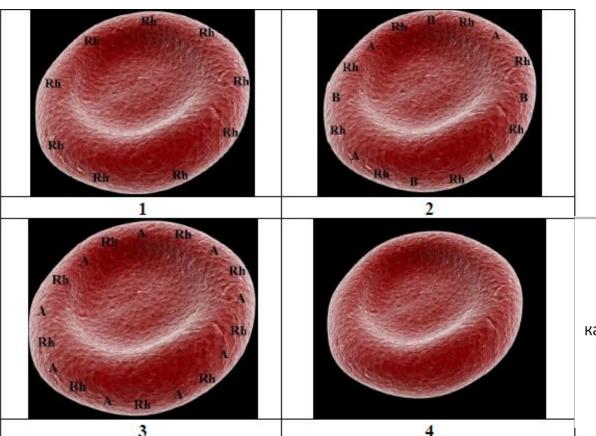
Тельце Барра

Барр и Бертрам (1949) обнаружили интенсивно окрашенную глыбку хроматина в ядрах нервных клеток самок, которой не было в таких же клетках самцов. Они назвали его половым хроматином (тельцем Барра). Позже было установлено, что тельце Барра – это одна из двух X-хромосом, находящаяся в неактивном (инактивированном) состоянии и что количество телец Барра всегда на одно меньше, чем число X-хромосом в кариотипе.

·					
	A		Б		В
	Выберите вид	Какие изменения		Выбо	ерите количество
изме	нений в кариотипе	илл	юстрирует данный		телец Барра
	человека		кариотип	xa	рактерное для
				ин,	дивида с таким
					кариотипом
1	Геномные	1	Увеличение числа	1	Одно
	мутации		аутосом		
2	Хромосомные	2	Увеличение числа	2	Два
	мутации		половых хромосом		S 182.5
3	Генные мутации	3	Уменьшение числа	3	Три
			аутосом		
4	Модификации	4	Уменьшение числа	4	Ноль
	_		половых хромосом		


Синдром Клайнфельтера

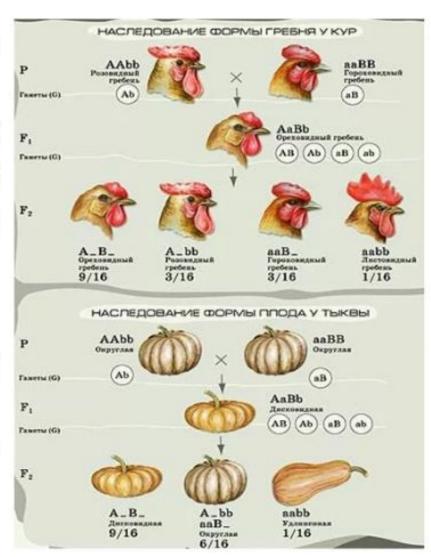
47 хромосом – лишняя X-хромосома – XXY (может быть XXXY)


Наблюдается у юношей

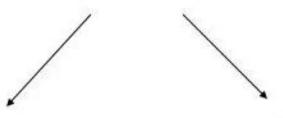
- Высокий рост
- Нарушение пропорций тела (длинные конечности, узкая грудная клетка)
- Отсталость в развитии
- Бесплодие

A	Б	В
1	2	1

- Измененный кариотип женщины
- Уменьшение числа половых хромосом
- Ноль телец Барра
- Геномная мутация


A	Б	В
4	4	3

При кодоминировании (гетерозиготный организм содержит два разных доминантных аллеля, например J^A и J^B), каждый из доминантных аллелей проявляет свое действие, т.е. участвует в проявлении признака.


Расщепление по фенотипу в F₂ 1:2:1

A		А Б		В		
ант	Определите количество видов антигенов в мембране эритроцита под номером 2		Укажите номер индивида с отрицательным резус – фактором		Выберите вид заимодействия между аллеями групп крови дивида, обозначенного под номером 2	
1	0	1	1	1	Комплементарность	
2	1	2	2	2	Эпистаз	
3	2	3	3	3	Кодоминирование	
4	3	4	4	4	Полимерия	
				5	Доминирование	

- Комплементарность взаимодополняющие гены, при взаимодействии которых (обычно доминантных) формируется признак.
- A+B = эффект (признак)
- Расщепление при комплементарном взаимодействии может быть: 9:7, 9:3:3:1, 9:6:1

Эпистаз – неаллельный ген подавляет гены из другой пары

Доминантный

если

эпистатичный ген

в доминантном

состоянии: АА

или Аа подавляет

гипостатичные

гены В и b

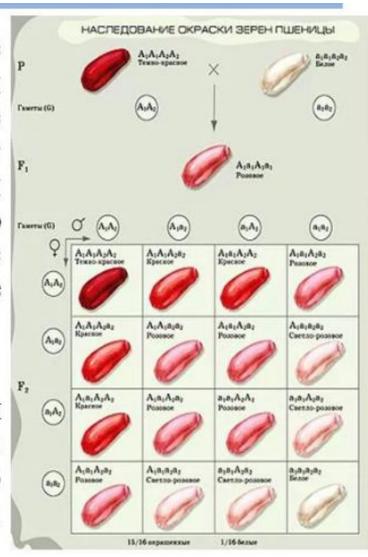
Ген А подавляет окраску у тыквы

Рецессивный

если эпистатичный аллель аа (в гомозиготном состоянии) подавляет В и b

(рецессивный эпистаз соответствует комплементарности наоборот)

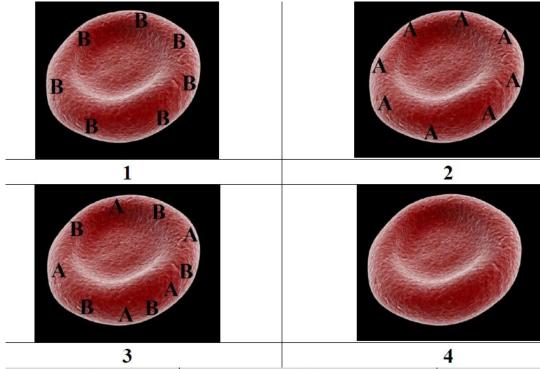
Эпистаз


- А нет окраски
- а нет окраски
- В дает пигмент
- в нет окраски
- аллель А > В -, т.е.
 является ингибитором или супрессором

Расщепление в F2: 13:3

Рис. 7. Наследование окраски оперения у кур

- Полимерия такое взаимодействие, при котором различные доминантные неаллельные гены могут оказывать действие на один и тот же признак, усиливая его проявление. Чем больше доминантных генов, тем ярче признак.
- Расщепление: 15:1, 1:4:6:4:1
- Полимерные гены обозначаются одной буквой с индексом: A1,A2,A3 и т.д. Полимерно наследуются цвет кожи, рост, масса тела, АД



Полимерия — взаимодействие неаллельных генов, при котором на проявление одного признака влияет одновременно несколько генов (при этом, чем больше в генотипе доминантных генов, тем более выражен признак).

Например, у человека количество меланина в коже определяется тремя неаллельными генами $A_{1}A_{2}A_{3}$. Наибольшее количество меланина характерно для генотипа $A_{1}A_{2}A_{3}A_{3}A_{4}$, что обуславливает темно-коричневый цвет кожи представителей негроидной расы. Для европеоидов характерен генотип $a_{1}a_{2}a_{3}a_{4}a_{3}a_{3}$. Промежуточные варианты будут определять различную интенсивность пигментации. При этом чем больше доминантов в генотипе, тем темнее кожа.

Количество доминантных генов, отвечающих за выработку

A		Б		В			
группу крови индивида, индивида, под г		Определите генотип ивида, обозначенного под номером 1	Выберите вид взаимодействия между генами индивида, обозначенного под				
	обозначенного			00			
под	под номером 1				номером 1		
1	I	1	I ^A I ^O или I ^A I ^A	1	Комплементарность		
2	II	2	I ^B I ^O или I ^B I ^B	2	Эпистаз		
3	III	3	I^AI^B	3	Кодоминирование		
4	IV	4	$I_{O}I_{O}$	4	Полимерия		
				5	Доминирование		

A	Б	В
3	2	5

Генотип индивида: **АаВв**, доминантные аллели получены от матери.

Расстояние между генами «А» и «В» – 12 морганид.

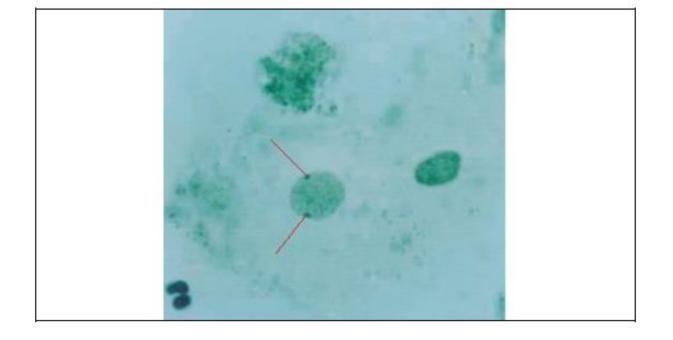
А Тип наследования признаков				В		
				Гаметы индивида и их процентное соотношение		
1	Аутосомное наследование	1	Полное сцепление признаков	1	12% - AB	
2	Сцепленное с полом наследование	2	Независимое комбинирование признаков	2	44% - ав	
		3	Неполное сцепление признаков	3	6% - AB	
				4	44% - aB	
				5	25% - AB	

A	Б	В
1	3	2

Вероятность кроссинговера между АВ и аb равна 12%

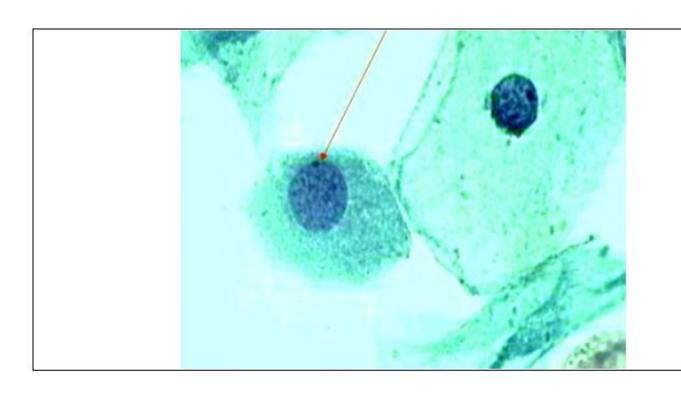
Возможность появления гамет Ad и аВ равна по 6% на каждое сочетание, всего 12%

На гаметы без кроссинговера остается 100-12 = 88%


Пополам на каждый сорт гамет AB и ab по 44%

Генотип индивида: АаВв, оба доминантных аллеля получены по наследству от отца.

Расстояние между генами «А» и «В» – 8 морганид.


	A		Б		В
Тип	Тип наследования		Вид сцепления		ъ индивида и
	признаков			их	процентное
(2)				co	отношение
1	Аутосомно-	1	Полное сцепление	1	92% - AB
	доминантное		признаков		
	наследование				
2	Сцепленное с	2	Независимое	2	46% - ав
	полом		комбинирование		
	наследование		признаков		
		3	Неполное сцепление	3	8% - Ав
			признаков	£ 3	
			112	4	46% - aB
8				5	25% - AB

A	Б	В
1	3	2

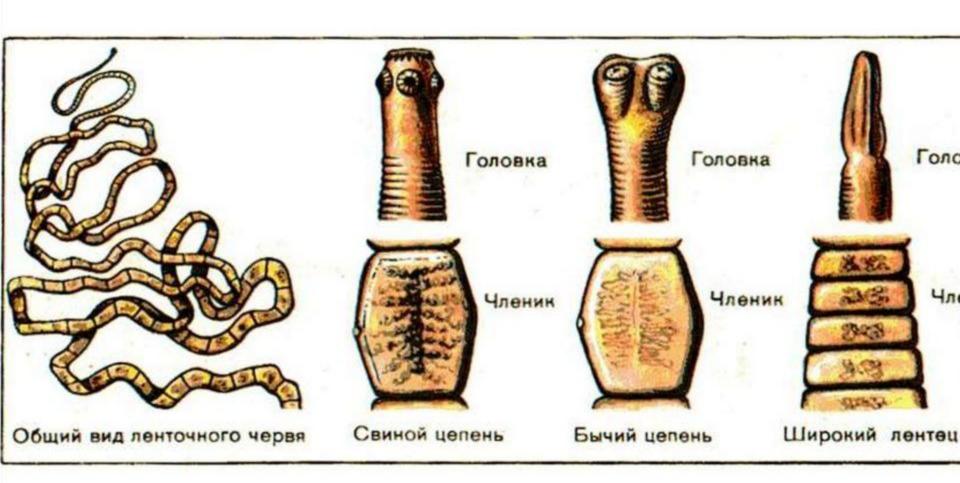
	A		Б		В
Клетки, изображенные на иллюстрации –		Набор хромосом в клетках на иллюстрации –		Фотография иллюстрирует использование метода -	
1	Прокариотные	1	44A + XO	1	Биохимического
2	Эукариотные	2	44A + XXY	2	Цитогенетического
		3	44A + XY	3	Близнецового
		4	44A + XXX	4	Генеалогического

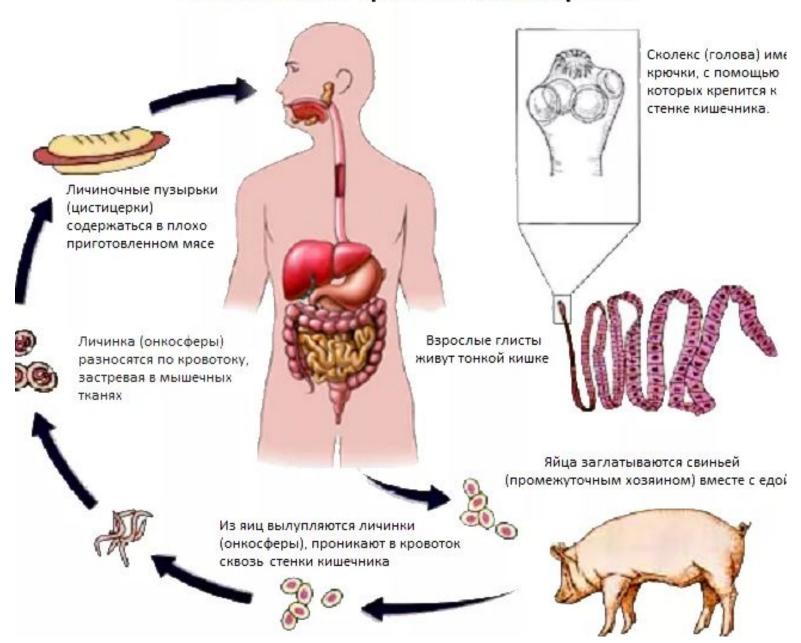
A	Б	В
2	4	2

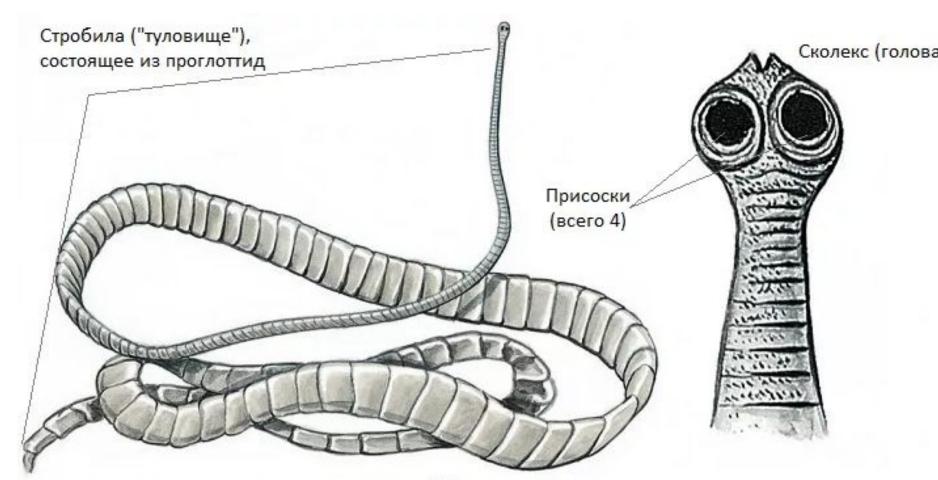
	A		Б		В
Клетки, изображенные на иллюстрации –		Набор хромосом в клетках на иллюстрации –		Фотография иллюстрирует использование метода –	
1	Прокариотные	1	44A + XO	1	Биохимического
2	Эукариотные	2	44A + XXY	2	Цитогенетического
		3	44A + XY	3	Близнецового
3				4	Генеалогического

A	Б	В
2	2	2

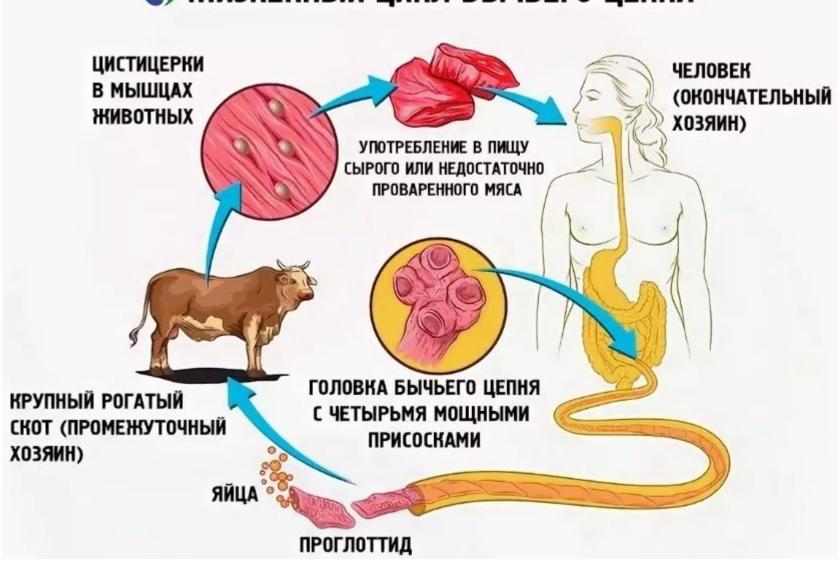
Задание 6. Выберите три утверждения, которые можно сформулировать на основании анализа иллюстрации.

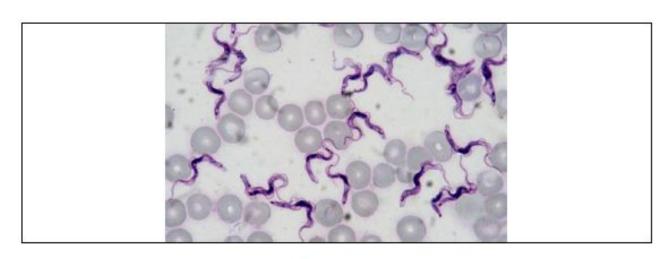

- 1) Пищеварительная система паразита сильно разветвлена;
- 2) Все личиночные стадии паразита развиваются во внешней среде;
- 3) Органами прикрепления паразита являются присоски;
- 4) На иллюстрации представлены сколекс и зрелый членик паразита;
- Заражение человека происходит при употреблении в пишу финнозного мяса крупного рогатого скота;
- 6) Членик паразита прямоугольной формы, вытянут в длину.


Выберите три утверждения, которые можно сформулировать на основании анализа иллюстрации.

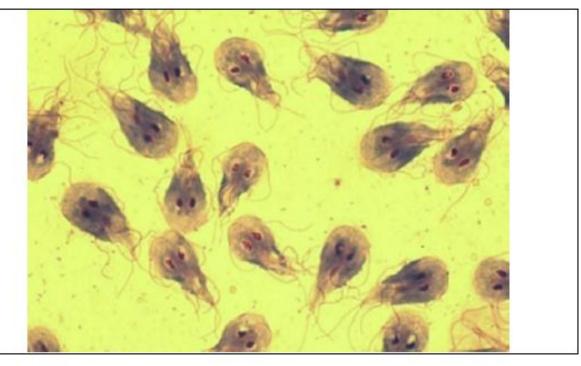

- 1) пищеварительная система паразита сильно разветвлена;
- 2) финны паразита локализуются в мышцах;
- 3) органами прикрепления паразита являются присоски;
- 4) паразит является гермафродитом;
- 5) тело паразита состоит из головки, шейки и члеников;
- окончательным хозяином паразита является человек, промежуточным хозяином – свинья и редко человек.

Ленточные черви (Cestoda)


Жизненный цикл свиного цепня



Бычий цепень



	A		Б		В		
	Определите тип/класс паразита человека, изображенного на иллюстрации		Паразит человека, изображенный на иллюстрации, обнаружен в		Опасность, изображенного на иллюстрации паразита, для человека—		
1	Саркодовые	1	Крови	1	Возбудитель малярии		
2	Жгутиковые	2	Толстой кишке	2	Возбудитель весенне- летнего энцефалита		
3	Инфузории	3	Двенадцатиперстной кишке	3	Возбудитель сонной болезни		
4	Споровики	4	Мышечной ткани	4	Не опасен		
				5	Возбудитель лямблиоза		
			3	6	Возбудитель лейшманиоза		

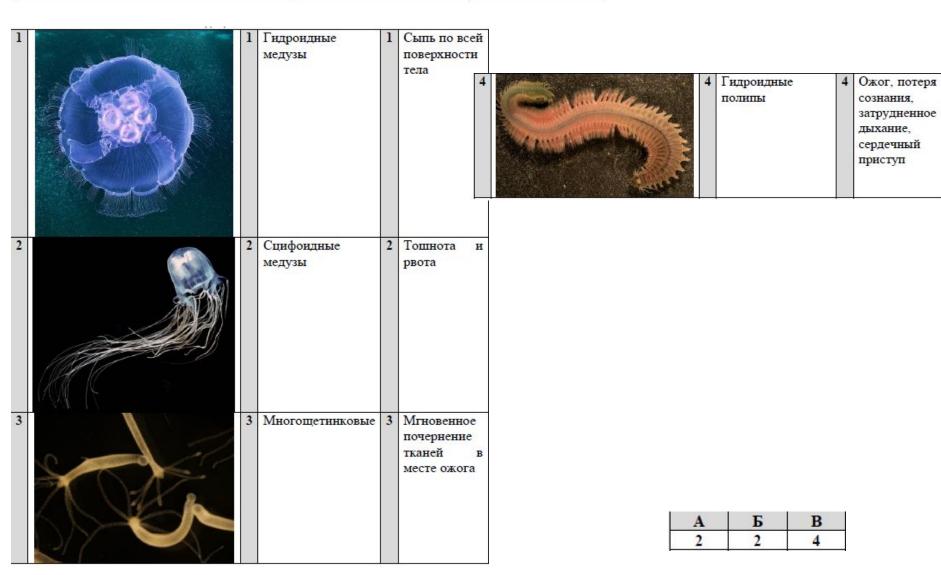
A	Б	В
2	1	3

8	A	Б	В
	2	3	5

	A		Б	В			
Определите класс животного, изображенного на иллюстрации		Где обитает в организме человека –		Опасность для человека —			
1	Саркодовые	1	Кровь	1	Возбудитель малярии		
2	Жгутиковые	2	Толстая кишка	2	Возбудитель весенне- летнего энцефалита		
3	Инфузории	3	Двенадцатиперстная кишка	3	Возбудитель сонной болезни		
4	Споровики	4	Мышечная ткань	4	Не опасен		
				5	Возбудитель лямблиоза		

	A		Б		В	
Тип ротового аппарата животного, изображенного на иллюстрации		Чем питается –		Опасность для человека —		
1	Грызущий	1	Кровь теплокровных животных	1	Переносчик малярии	
2	Лакающий	2	Соки растений	2	Переносчик таежного энцефалита	
3	Сосущий	3	Детрит	3	Переносчик сонной болезни	
4	Колюще-сосущий	4	Личинками насекомых	4	Эктопаразит	

A	Б	В
4	1	4



000	A	Б	В
	2	1	2

Î	А Б			В	
	Определите пол клеща, зображенного на иллюстрации	Чем питается — Опа) Опасность для человека—	
1	Самец	1	Кровь теплокровных животных	1	Переносчик малярии
2	Самка	2	Соки растений	2	Переносчик таежного энцефалита
		3	Детрит	3	Переносчик сонной болезни
				4	Не опасен

A	Б	В
Определите под каким номером представлено ядовитое животное	Определите к какой систематической группе относится ядовитое животное	Воздействие ядовитого животного на организм человека

	A		Б		В
	Определите под каким номером представлен ядовитый гриб	какой профилактии систематической отравления эт		Выберите меры профилактики отравления этим ядовитым грибом	
1		1	Зигомицеты	1	Термическая обработка грибов
2		2	Аскомицеты	2	Добавление в блюда с грибами уксусной кислоты
3		3	Базидиомицеты	3	Собирать только известные грибы
4					

A	Б	В
1	3	3

0	T	n	Ó	L.
•	١,	щ	10	12

Настоящие грибы

возбудитель болезни "черная ножка" капусты (Olpidium brassicae)

класс	Хитридиомицеты	Зикомицеты	Аскомицеты	Базидиомицеты	Дейтеромицеть
особенности строения	Одноклеточные и микроскопические формы, образующие цитоплазматическую массу	Одноклеточные	Многоклеточные формы. Споры содержатся в специальных сумках	Мицелий многоклеточный, органы спороношения - базидии	Мицелий состоит из многоядерных клеток; бесполое размножение
особенности знедеятельности	Паразиты водорослей, водных грибов и растений, беспозвоночных животных	В основном наземные, разлагающие органику. Встречаются паразиты	Разлагают органику. Встречаются паразиты	Разлагают органику. Часть тела может находиться на поверхности, часть - погружена в почву	Разлагают органику, встречаются паразиты
представители	Ольпидиум	Мукор	Дрожжи, спорынья, сморчки, строчки	Шляпочные грибы, трутовики	Пеницилл
		MA ISA	M TOC	Трутовик серно-желтый. Растет с середины мая до осени на остатках деревьев или на живых спабых деревьях	
	A Day	мукор - это род плесневых грибов,	397		
		которые развиваются на продуктах питания, и органических			

остатках

в аквариумах дрожжи используют для получения CO₂ (углекислого газа)


A			Б		В
В период инфекционного заболевания в крови человека увеличивается количество		ционного перенесенного ния в крови инфекционного увеличивается заболевания у		За поддержание гомеостаза в организме человека отвечает	
2	Лейкоцитов	2	Естественный активный	2	Промежуточный мозг
3	Тромбоцитов	3	Искусственный активный	3	Средний мозг
4	Фибриногена	4	Искусственный пассивный	4	Мозжечок

A	Б	В
2	2	2

A	Б	В
1	2	1

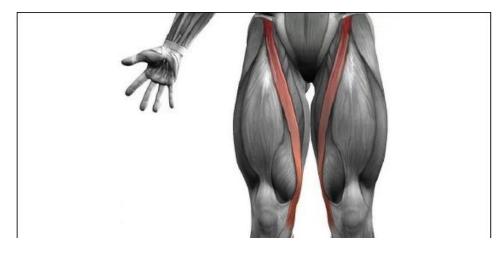
А В период мобилизации сил организма активен отдел вегетативной нервной системы		Б В период мобилизации сил организма дыхательный объем		В В период мобилизации сил организма информация об изменении концентрации углекислого газа в крови поступает в	
2	Парасимпатический	2	Уменьшается	2	Мост
				3	Средний мозг
	3			4	Мозжечок

А			D	D			
Переваривание белков на уровне организма у человека завершается в			Для завершения реваривания белков уровне организма бходимы ферменты	Чувство насыщения в организме человека формируется в отделе мозга —			
1	Желудке	1	Печени	1	Продолговатом		
2	Тонком отделе кишечника	2	Желез желудка	2	Среднем		
3	Толстом отделе кишечника	3	Поджелудочной железы	3	Мосте		
4	Поджелудочной железе			4	Промежуточном		
5	Печени			5	Спинном		

A	Б	В
2	3	4

	A	Б	В
ſ	1	1	4

	A		Б		В		
При повышении температуры окружающей среды количество крови в капиллярах кожи		При повышении температуры окружающей среды секреция потовых желез			При повышении температуры окружающей среды чувство жажды образуется в отделе мозга —		
1	Увеличивается	1	Увеличивается	1	Продолговатом		
2	Уменьшается	2	Уменьшается	2	Среднем		
3	Не изменяется	3	Не изменяется	3	Мосте		
				4	Промежуточном		
				5	Спинном		


	A		Б		В			
Генетическое единство человечества доказывает -			Морфологическое единство человечества доказывает –		Популяционно- видовое единство человечества доказывает –			
1	Выработка молока в период лактации	1	Наследование групп крови	1	 S – образный изгиб позвоночника 			
2	Геном человека	2	Общие генетические заболевания	2	Плодовитые межрассовые браки			
3	Папиллярный рисунок на подушечках пальцев	3	Сходные параметры хирургических иструментов для одной возрастной категории	3	Наличие борозд и извилин в коре больших полушарий			

A	Б	В
2	3	2

A	Б	В
2	3	2

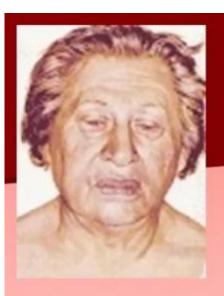
А Генетическое единство человечества доказывает -			Б Лорфологическое нство человечества доказывает –	В Популяционно- видовое единство человечества доказывает —		
1	Одинаковая длительность периода беременности	1	Наличие резус- фактора	1	Развитие коры больших полушарий	
2	Набор хромосом - 44A + XX или 44A + XY	2	Общие генетические заболевания	2	Плодовитые межрассовые браки	
3 Возможность общения с помощью речи		3 Одинаковое строение внутренних органов		3	Наличие подбородочного выступа	

А Б В							
Белок необходимый для роста массы, выделенной на рисунке красным цветом мышце, образуется в органоиде –	Мышца, выделенная на рисунке красным цветом, называется –			Нервный импульс поступает к мышце по нейрону –			
	1	Партняжі	ной	1	Встав	вочному	
	2	Грушевид	йонд	2	Чувст	вительному	
3	3	Бедренно	й А 3	Б 1	Двига В 3	ательному	

0	A	Б	В
	2	3	3

	A		Б	В				
В каких органоидах образуется энергия необходимая велосипедисту		Какие мышцы работают, когда он нажимает на педали		По какому нейрону нервный импульс поступает к мышце				
1				1 Дельтовидная		1	Вставочному	
2		2	Грушевидная	2	Чувствительному			
3		3	Икроножная	3	Двигательному			

A		Б	В			
У человека на фотографии нарушена работа железы		У человека на фотографии отличается от физиологической нормы концентрация гормона		У человека на фотографии наблюдаются функциональные нарушения —		
	1	Тироксина	1	Понижение уровня обмена веществ		
2	2	Адреналина	2	Акромегалия		
3	3	Соматотропина	3	Диабет		
4	4	Инсулина	4	Рост хрящевых элементов скелета после 25 лет		
5	5	Прогестерона	5	Повышенное артериальное давление		



от греч. akron — конечность и megas большой

избыточная продукция гормона Причины роста, при аденоме гипофиза. Реже поражение гипоталамуса (опухоли, воспалительные процессы, травмы, инфекционное и сифилитическое поражение промежуточного мозга)

Возникает после завершения роста в возрасте 20 -40 лет

Микседема (слизистый отек)

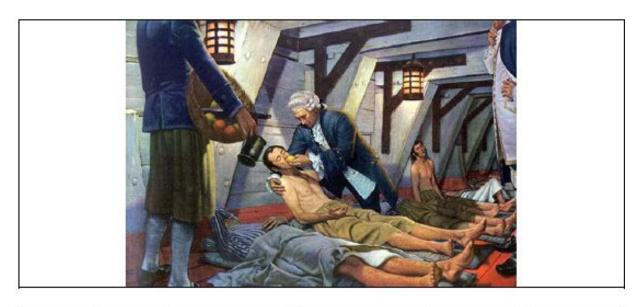
Симптомы:

- отечность кожи и подкожной клетчатки, выпадение волос, вялость,
- снижение умственных способностей,
 понижение обмена веществ,
- нарушение функции нервной системы (коры больших полушарий)

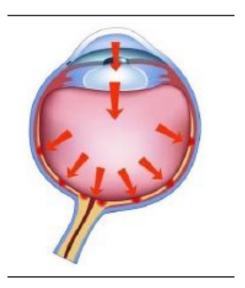
A	Б	В
2	3	3

	A		Б		В
У человека, обозначенного цифрой 1, нарушена работа железы		1, нарушена работа обозначенного		У человека, обозначенного цифрой 1 наблюдаются функциональные нарушения—	
1		1	Тироксин	1	Раннее окостенение хряща длинных трубчатых костей
2		2	Адреналина	2	Окостенение хряща длинных трубчатых костей к 25 годам
3		3	Соматотропина	3	Отсутствие окостенения хряща длинных трубчатых костей

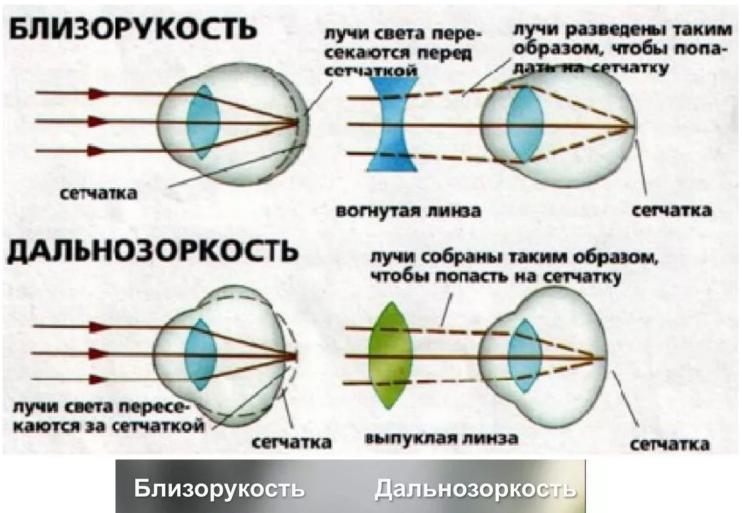
1	A	Б	В
	2	1	1

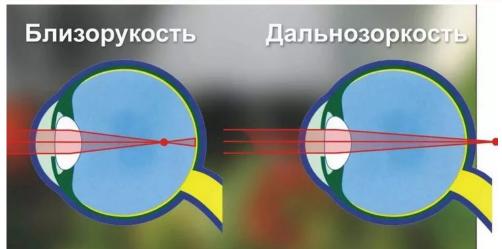

А Фотография иллюстрирует гиповитаминоз –			Б	В		
		При данном гиповитаминозе происходит—			Заболевание –	
1	A	1	Нарушение обмена кальция и фосфора	1	Рахит	
2	D	2	Понижение устойчивости мембран клеток к инфенциям	2	Куриная слепота	
3	С	3	Уменьшение количества зрительного пигмента	3	Цинга	
4	B ₁	4	Нарушение тканевого дыхания и передачи нервного импульса	4	Бери-бери	

Бери-бери - дефицит витамина В

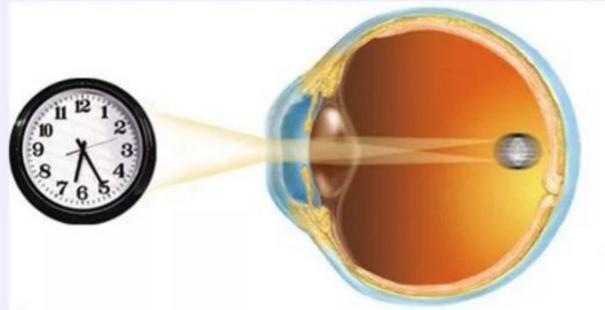

Снижение физической и психической устойчивость ребенка, Мышечная слабость, Снижена перистальтика кишечника - запоры, Полиневрит.

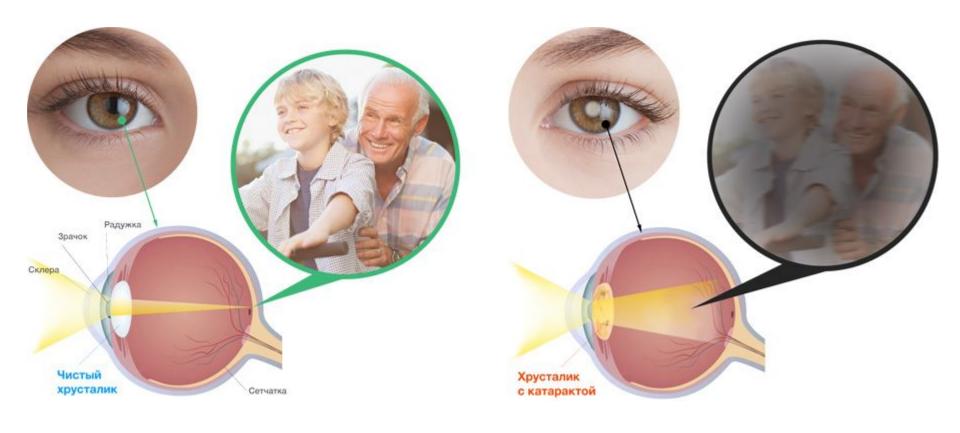
A	Б	В
3	3	1




A			Б		В
	Изменение обмена веществ –		Заболевание –	Профилактика заболевания –	
1	A	1	Рахит	1	1
2	D	2	Куриная слепота	2	
3	С	3	Цинга	3	

A			Б	В		
	Иллюстрация демонстрирует нарушение органа чувств –		Причина нарушения органа чувств –		Коррекция нарушени органа чувства—	
1	Близорукость	1	Повышение внутриглазного давления	1	Очки с двояковыпуклыми линзами	
2	Катаракту	2	Изменение размера глазного яблока	2	Индивидуальные очки с корректирующими	
			ar megangamenta awantena	T	линзами	
3	Астигматизм	3	Помутнение хрусталика	3	Очки с двояковогнутыми линзами	
4	Дальнозоркость	4	Нарушение кривизны роговицы или хрусталика	4	Подбор глазных капель для снижения давления	
5	Глаукому	5	Изменение формы хрусталика	5	Замена хрусталика	


A	Б	В
5	1	4



Астигматизм

Астигматизм – это патология рефракции глаза при которой нарушается сферичность роговицы, т.е. в разных меридианах разная преломляющая сила и изображение предмета при прохождении световых лучей через такую роговицу получается не в виде точки, а в виде отрезка прямой. Человек при этом видит предметы искаженными, в которых одни линии четкие, другие - размытые.

Катара́кта — патологическое состояние, связанное с помутнением хрусталика глаза и вызывающее различные степени расстройства зрения вплоть до полной его утраты. Помутнение хрусталика обусловлено денатурацией белка, входящего в его состав.

A	Б	В
1	4	1

А Систола предсердий длится –			Б Во время систолы предсердий –		Во время систолы предсердий кровь движется из –	
1	0.1 сек	1	Полулунные клапаны открыты	1	Предсердий в желудочки	
2	0.3 сек	2	Створчатые клапаны закрыты	2	Предсердий в сосуды	
3	0.8 сек	3	Полулунные клапаны закрыты	3	Желудочков в сосуды	
4	0.4 сек	4	Створчатые клапаны открыты	4	Желудочков в предсердия	

Работа сердца. Сердечный цикл

Фазы	Время фазы (сек)	Положение клапанов	Направление движение крови
Сокращение (систола) предсердий	0,1	Створчатые – открыты Полулунные – закрыты	Предсердие желудочек
Сокращение (систола) желудочков	0,3	Створчатые – закрыты Полулунные – открыты	Из лев.желудочека в аорту, из прав.желудочека в легочную артерию
Пауза (общее расслабление)- диастола	0,4	Створчатые – открыты Полулунные – закрыты	Стекает из вен в предсердия, из предсердия в желудочки