Сердечно-сосудистая система

Состав сердечно-сосудистой системы

- Четырехкамерное сердце
- Малый круг кровообращения (лёгочный)
- Большой круг кровообращения (системный)

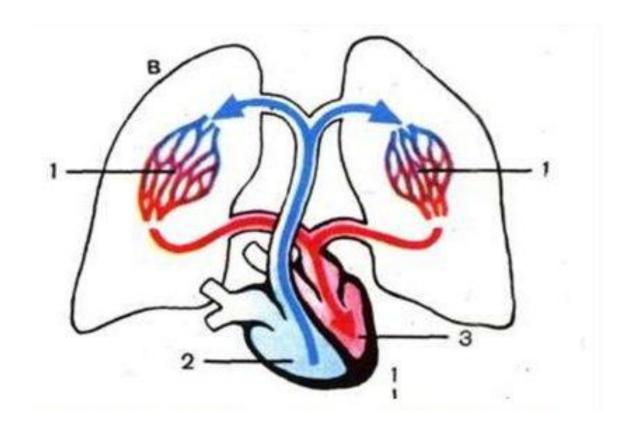
Функции сердечно-сосудистой системы:

- 1. Транспорт питательных веществ и кислорода тканям и обеспечение, таким образом, в них обмена веществ и энергии;
- 2. Транспорт от тканей продуктов метаболизма к органам, обеспечивающих их экскрецию;
- 3. Транспорт биологически активных веществ, растворимых солей и метаболитов, участвующих в механизмах гуморальной регуляции в организме;
- 4. Транспорт различных элементов иммуно-компетентной системы (специфических антител, фагоцитирующих клеток и др.) и участие в связи с этим в механизмах иммунологической защиты организма;
- 5. Участие в процессах терморегуляции;
- 6. Участие в механизмах гемостаза;
- 7. Участие в механизмах поддержания водно-электролитного баланса;
- 8. Участие в механизмах поддержания кислотно-щелочного равновесия (в крови, циркулирующей по сосудам, находятся три буферные системы: белковая, карбонатная, фосфатная).

Основные показатели кровообращения

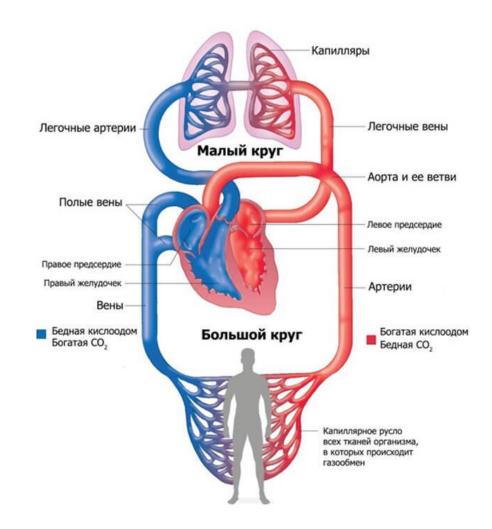
- 1. Частота сердечных сокращений (Норма 60-90 уд/мин)
- Артериальное давление давление крови на стенки сосудов (Норма 120/80 мм рт.ст.):
 - 1. Систолическое (Наибольшее давление. Сердце выбрасывает кровь)
 - 2. Диастолическое (Наименьшее. Сердце прекращает выбрасывать кровь)
- 3. Показатели электрокардиограммы (регистрация и исследование электрических полей, образующихся при работе сердца)

Факторы влияющие на кровообращение:


- 1. Физическая и пищевая нагрузка
- 2. Стресс
- 3. Образ жизни
- 4. Вредные привычки

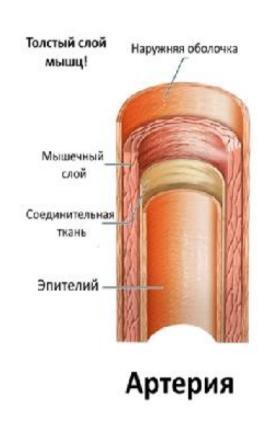
Круги кровообращения

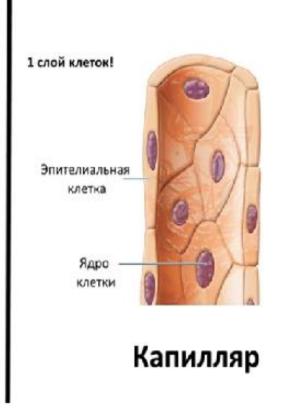
- 1. Малый круг (Лёгочный)
- 2. Большой круг (Системный)


Малый круг кровообращения

- Начало правый желудочек
- Конец левое предсердие

Большой круг кровообращения

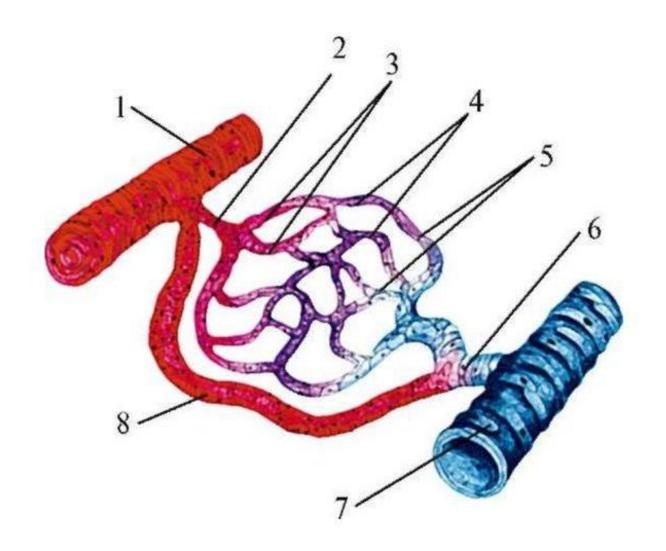

- Начало левый желудочек
- Конец правое предсердие



Виды сосудов

- Артерии:
 - Эластический тип
 - Мышечный тип
- Артериолы место разветвления артерий в прекапилляры
- Прекапилляры место перехода артериол в капилляры
- Истинные капилляры
- Посткапилляры место перехода капилляров в венулы
- Венулы места перехода посткапилляров в вены
- Вены возвращают кровь к сердцу за счет отрицательного давления грудной полости и всасывающей силы сердца

Виды сосудов



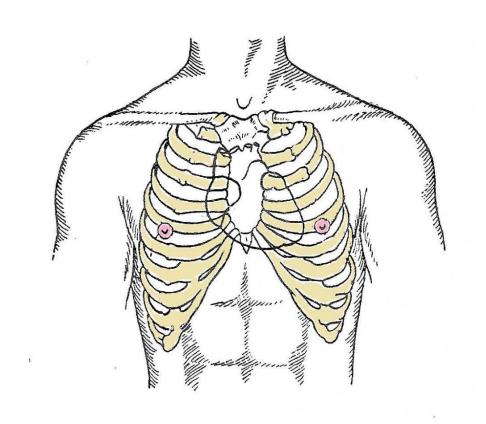
Функциональные группы сосудов

- Амортизирующие сосуды амортизируют давление крови
- Резистивные сосуды регулируют просвет, тем самым регулируют скорость кровотока
- Сосуды-сфинктеры регулируют численность работающих прекапилляров
- Обменные сосуды
- Ёмкостные сосуды депонируют большие объемы крови
- Шунтирующие сосуды сосуды ответвляющиеся от основного кровяного русла

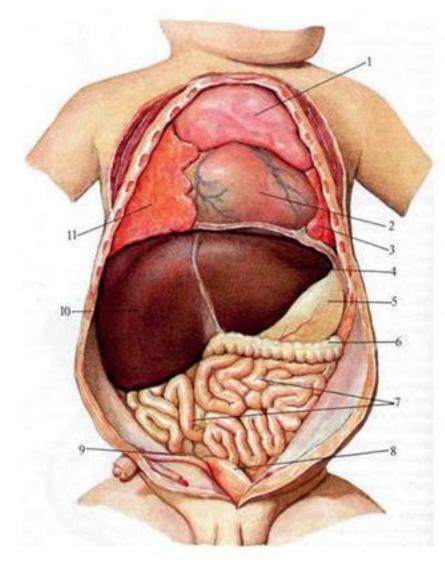
Система микроциркуляции

- 1 артерия
- 2 артериола
- 3 прекапилляры
- 4 капилляры
- 5 посткапилляры
- 6 венула
- 7 вена

Сердце – морфологические характеристики

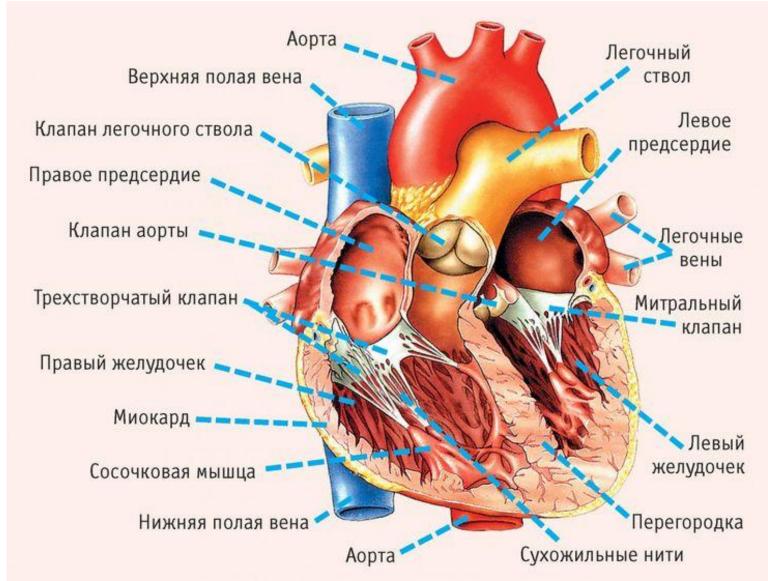

- Macca
 - Мужчины 300 гр
 - Женщины 250 гр
 - Спортсмены 350-400 гр
- Размеры
 - Вертикальный 12-15 см
 - Поперечный (ширина) 9-11 см
 - Передне-задний (Толщина) 6-8 см

Сердце – функциональные характеристики

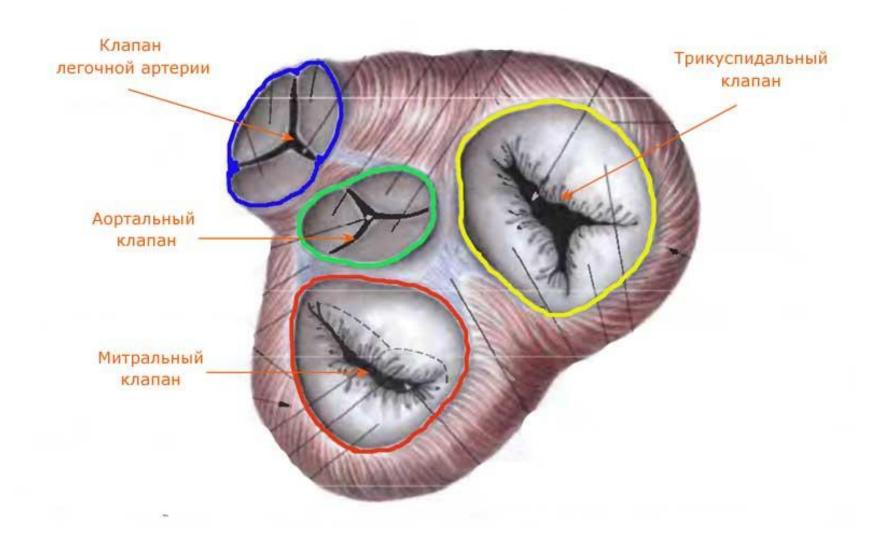

- 4CC
 - Норма 60-90 уд/мин
 - Нагрузка до 200 уд/мин
- ЧСС в сутки 100000 раз
- За одно сокращение в аорту выбрасывается 80-100 мл крови
- За одну минуту 5 л крови
- За 1 час 300 литров
- За одни сутки 7500 литров

Топография сердца

- 1. Верхняя граница верхний край хрящей третей пары рёбер
- 2. Левая сторона идет по дугообразной линии от верхнего хряща третей пары рёбер до границы верхушки
- 3. Левое пятое межреберье на 1-2 см медиальнее левой среднеключичной

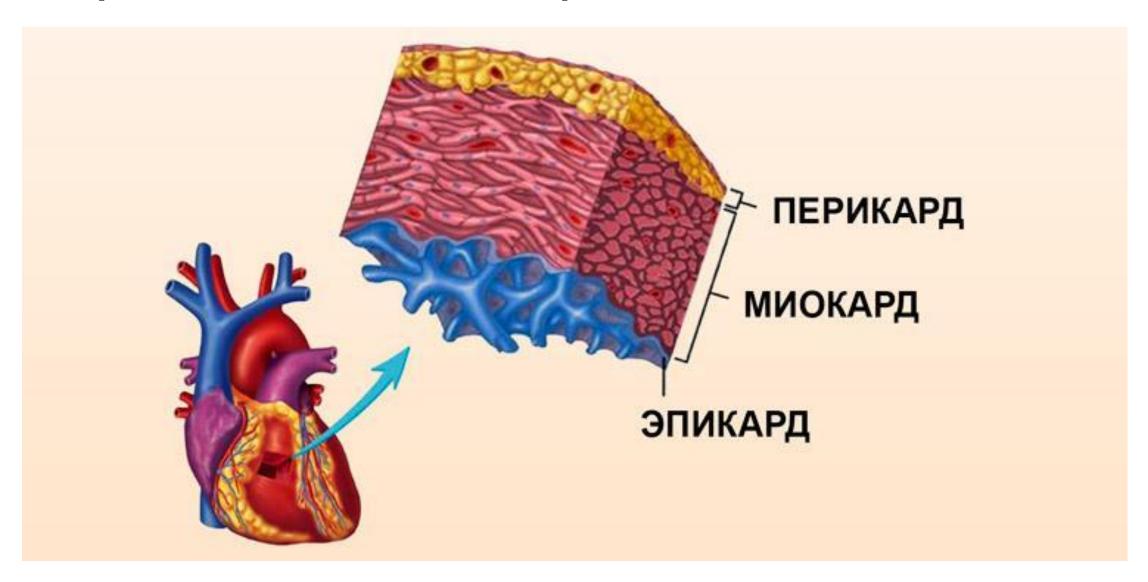


Топография сердца новорожденного



- сердце занимает поперечное положение и оттеснено кзади увеличенной вилочковой железой.
- в первые месяцы жизни рост предсердий происходит более интенсивно, чем рост желудочков;
- на втором году жизни рост их одинаков.
- начиная с 10-летнего возраста, желудочки опережают предсердия.
- с конца первого года сердце начинает занимать косое положение

Анатомия сердца


Клапаны сердца

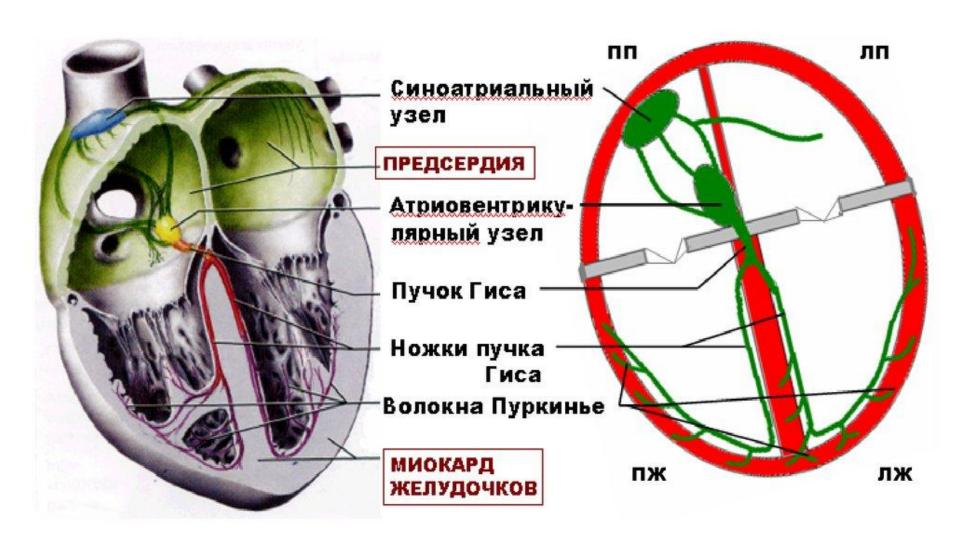
Принцип работы клапанов

- Активные клапаны
 - Митральный
 - Трикуспидальный
- Пассивные клапаны
 - Аортальный
 - Клапан лёгочной артерии

Строение стенки сердца

Эндокард

- Выстилает полость сердца изнутри
- Состоит из соединительной ткани с эластическими волокнами, гладкомышечными клетками и эндотелия
- Образует предсердно-желудочковые клапаны, клапаны аорты, легочного ствола, заслонки нижней полой вены и венечного синуса

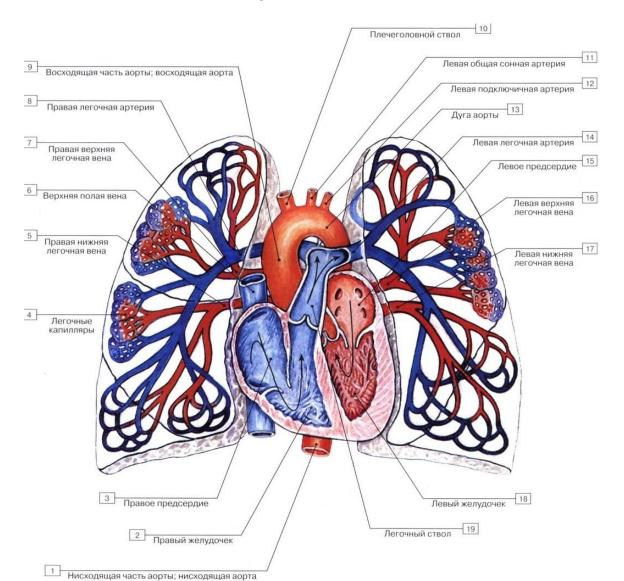

Миокард

- Состоит из особой сердечно исчерченной мышечной ткани
- Сокращается непроизвольно
- Менее выражена мускулатура предсердий
- Наиболее выражена мускулатура желудочков
- Мышечные пучки предсердия и желудочков не соединяются между собой

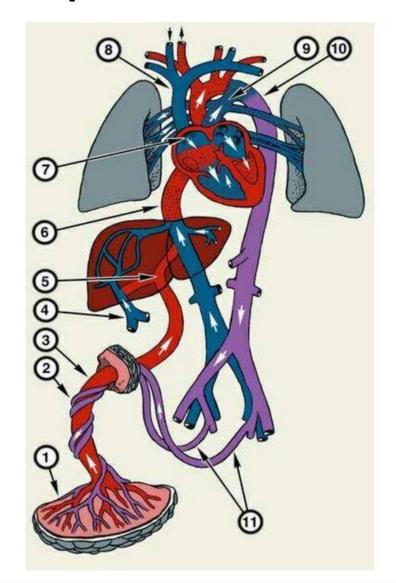
Перикард

- Околосердечная сумка
- Состоит из двух листков:
 - Наружный (париетальный) изолирует сердце. Защищает от излишнего растяжения. Выстилает перикард и переходит в эпикард у места отхождения крупных сосудов
 - Внутренний (висцеральный) эпикард
- Перикардиальная полость содержит серозную жидкость, уменьшает трение при сердечных сокращениях

Проводящая система сердца


Кровообращение сердца

Сущность малого круга кровообращения


Сосуды малого круга кровообращения

- Легочный ствол
- Правая и левая легочные артерии
- Верхняя левая легочная вена
- Нижняя левая легочная вена
- Верхняя правая легочная вена
- Верхняя левая легочная вена

Сосуды малого круга кровообращения

Кровообращение плода

Схема кровообращения плода:

- плацента;
- 2 пупочные артерии;
- 3 пупочная вена;
- 4 воротная вена;
- 5 венозный проток;
- 6 нижняя полая вена;
- 7 овальное отверстие;
- 8 верхняя полая вена;
- 9 артериальный (боталлов) проток;
- 10 аорта;
- 11 подчревные артерии.

Красным цветом — обозначена артериальная кровь;

синим — венозная;

красным с синими точками — смешанная кровь, близкая по составу к артериальной;

синим с красными точками и сиреневым — смешанная кровь, близкая по составу к венозной (содержание двуокиси углерода несколько меньше в крови, обозначенной сиреневым цветом).

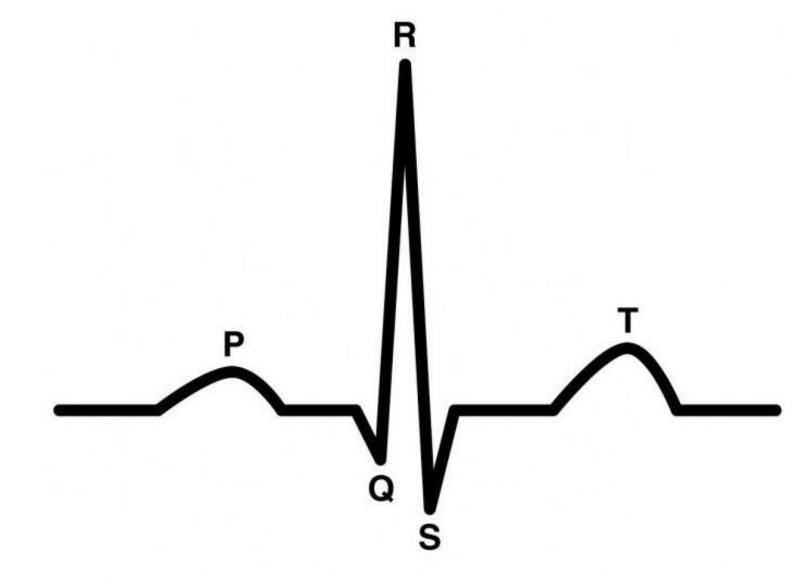
Интересный факт

ЧСС плода – 150 уд/мин

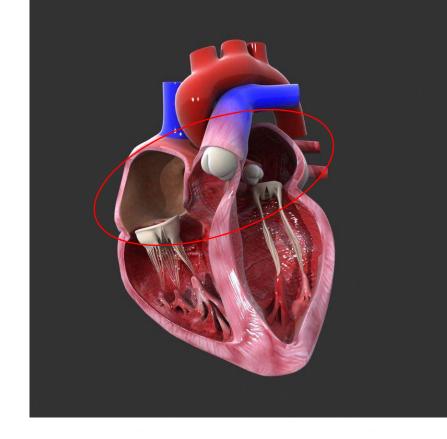
Физиология сердечнососудистой деятельности

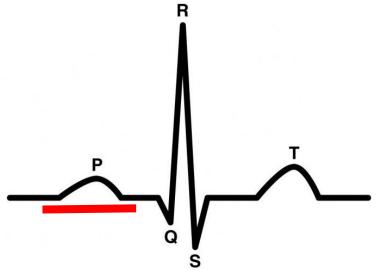
Свойства миокарда

- Автоматия
- Сократимость
- Проводимость
- Возбудимость

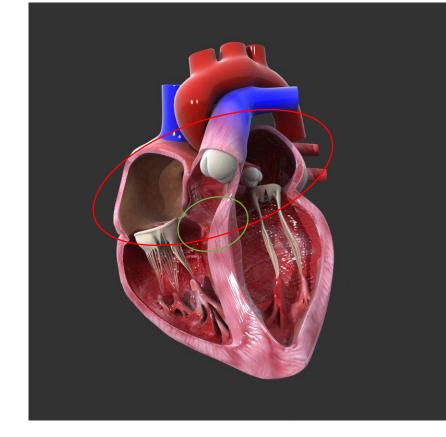

Проводящая система сердца

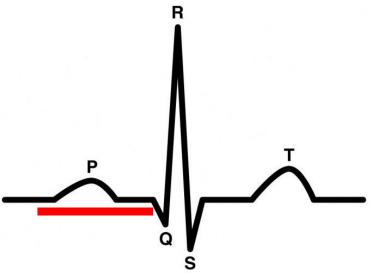
- 1. Синоатриальный узел
- 2. Межузловые пучки
- 3. Межпредсердный пучок
- 4. АВ-узел
- 5. Пучок Гиса
- 6. Правая и левая ножки пучка Ги
- 7. Волокна Пуркинье


Кардиограмма

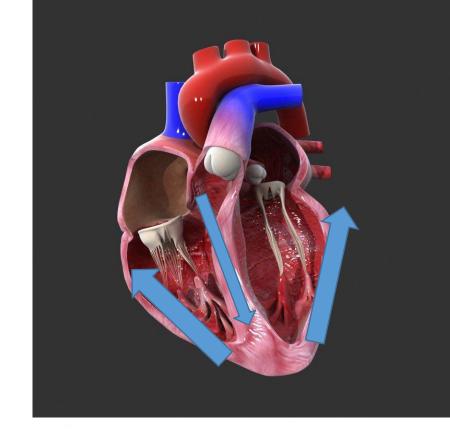

- 1. Изолиния
- 2. Зубцы:
 - 1. Положительные
 - 2. Отрицательные
- 3. Зубцы PQRST
- 4. Интервалы:
 - 1. P-Q
 - 2. Q-T
- 5. Комплекс Q R S
- 6. Сегменты:
 - 1. P-Q
 - 2. S-T

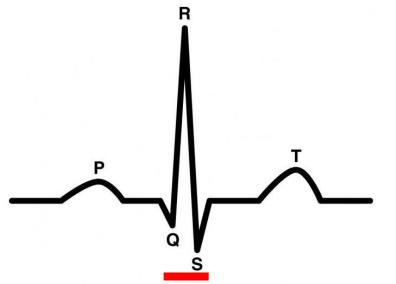
Зубец Р


- •Возбуждение правого и левого предсердий
- •Продолжительность 0,06 0,10 сек

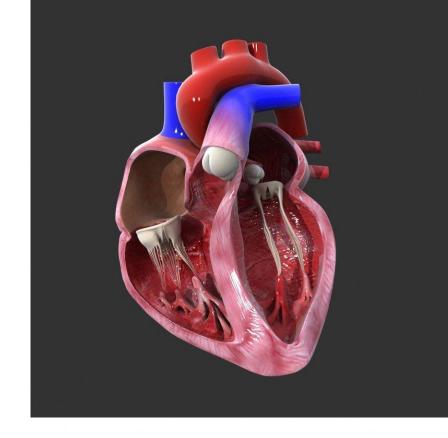


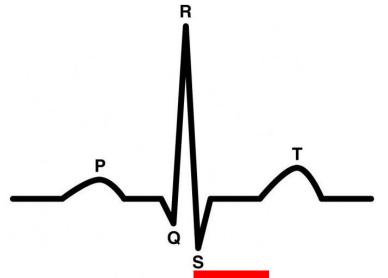
Интервал P – Q


- Фаза возбуждения двух предсердий и атриовентрикулярного узла, но при этом возбуждение на желудочки еще не передано
- Продолжительность 0,12 0,20 сек

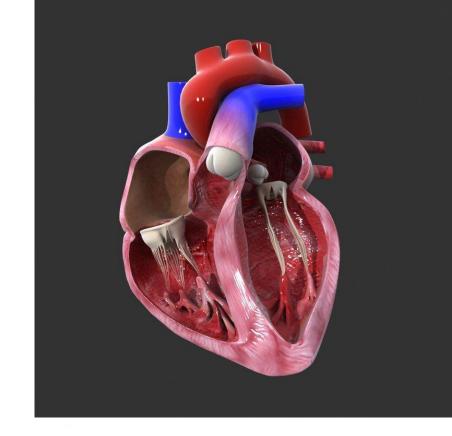


Комплекс QRS

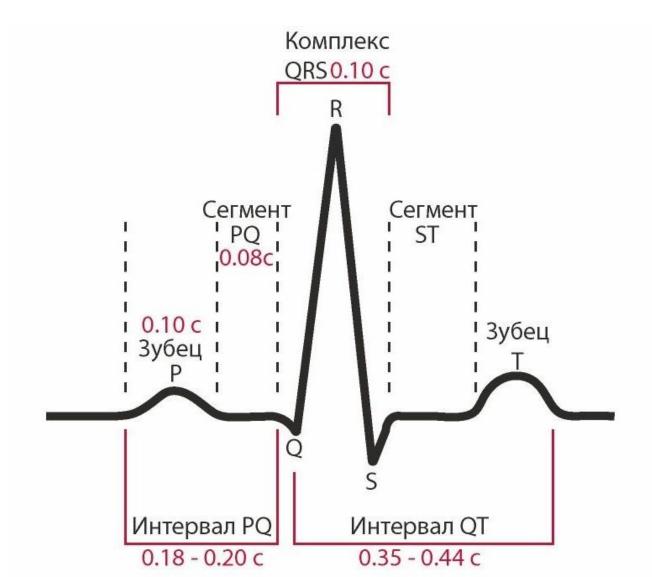

- Волна возбуждения охватывает мускулатуру желудочков
- Продолжительность 0,06 0,10



Сегмент S – Т


- Начало процесса расслабления желудочков
- Продолжительность до 0,20 сек

Зубец Т


• Полное расслабление желудочков

Временные интервалы ЭКГ

Длительность периодов кардиограммы является важным диагностическим признаком

Гемодинамика

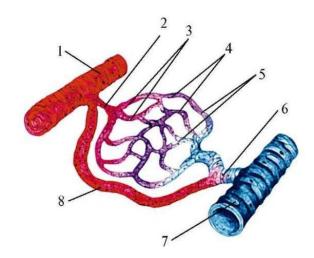
Транскапилярный обмен

- Артериальное давление
- Онкотическое давление

Транскапилярный обмен

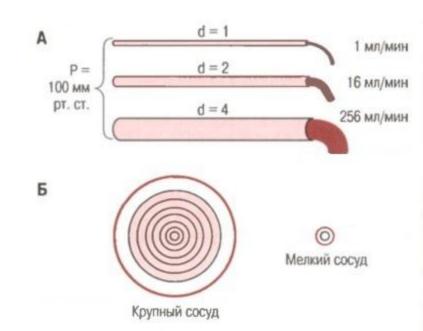
1 - артерия

2 - артериола

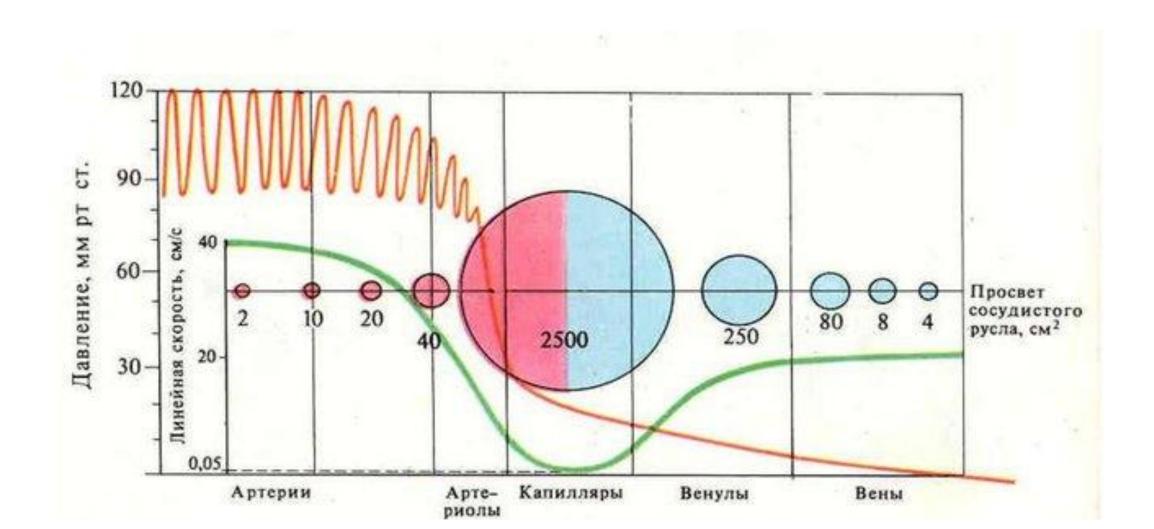

3 - прекапилляры

4 - капилляры

5 - посткапилляры


6 - венула

7 - вена



Факторы влияющие на гемодинамику

- Работа сердца
- Объем циркулирующей крови
- Сопротивление сосудистой стенки
- Регионарное перераспределение крови

Зависимость изменения давления от типа сосудов

Патологии сердечно-сосудистой системы

- Аритмии:
 - Тахикардия
 - Брадикардия
- Нарушение сосудистого тонуса:
 - Гипотония
 - Гипертония

Аритмии

Аритмии – это нарушение сердечной проводимости, а также частоты и регулярности его сокращений, приводящее в итоге к нарушению нормальной работы сердца и субъективно неприятным симптомам.

Тахикардия

Тахикардия— увеличение частоты сердечных сокращений (ЧСС) от 90 ударов в минуту.

Следует различать тахикардию как патологическое явление, то есть увеличение ЧСС в покое, и тахикардию как нормальное физиологическое явление (увеличение ЧСС в результате физической нагрузки, волнения или страха

Брадикардия

Брадикардия – вид аритмии, с частотой сердечных сокращений менее 60 ударов в минуту. Встречается как вариант нормы у тренированных спортсменов, но чаще сопровождает различную сердечную патологию.

Гипотония

Гипотония - снижение артериального давления более, чем на 20 % от исходного/обычных значений или в абсолютных цифрах — ниже 90 мм рт. ст. систолического давления или 60 мм рт. ст. среднего артериального давления. Снижение давления может быть острым и хроническим.

Гипертония

Гипертония - синдром повышения систолического артериального давления (САД) до 140 мм рт. ст. и выше, и одновременно или самостоятельно — диастолического АД (ДАД) ≥ 90 мм рт. ст.

Внешние проявления сердечной деятельности

- Верхушечный толчок верхушка сердца поднимается и толкает грудную клетку вперед
- Сердечные тоны звуковые явления, возникающие при работе сердца (систолический – более глухой и продолжительный и диастолический короткий и высокий)
- Электрические явления сердца

Фонокардиография – регистрация шумов при работе сердца

Тоны сердца

1 тон сердца появляется во время сокращения сердечной мышцы.

Он складывается из:

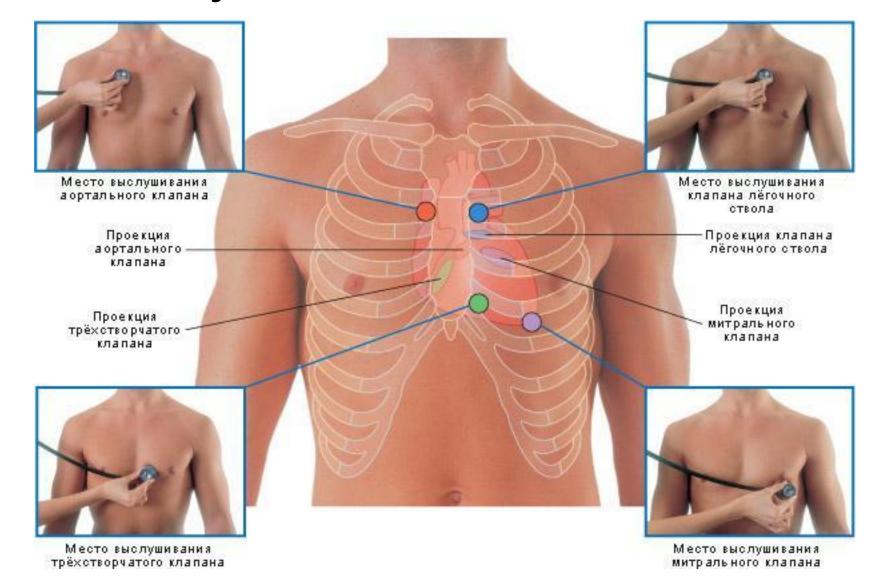
- Вибрации напряженных волокон миокарда;
- Шума схлопывания створок предсердно-желудочковых клапанов;
- Вибрации стенок аорты и легочного ствола под давлением поступающей крови

2 сердечный тон появляется через короткий промежуток времени после первого.

Он слагается из:

- Схлопывания створок аортального клапана:
- Схлопывания створок клапана легочного ствола.

Он менее звучный, чем первый и превалирует во 2-м межреберье справа и слева. Пауза после второго тона более длинная, чем после первого, так как она соответствует диастоле.


Тоны сердца

3 сердечный тон не является обязательным, в норме он может и отсутствовать. Он рождается колебаниями стенок желудочков в тот момент, когда происходит пассивное заполнение их кровью. Чтобы уловить его ухом, необходим достаточный опыт в аускультации, тихое помещение для обследования и тонкая передняя стенка грудной полости (что встречается у детей, подростков и астеничных взрослых).

Тоны сердца

4 сердечный тон также относится к необязательным, отсутствие его не считается патологией. Он появляется в момент систолы предсердий, когда происходит активное заполнение желудочков кровью. Четвертый тон лучше всего выслушивает у детей и субтильных молодых людей, у которых грудная клетка тонкая, а сердце плотно прилегает к ней.

Места выслушивания клапанов

Сердечный цикл

В цикличном функционировании сердца различают две фазы:

- систолу (сокращение)
- диастолу (расслабление).

Во время систолы полости сердца освобождаются от крови, а во время диастолы заполняются кровью.

Период, включающий одну систолу и одну диастолу предсердий и желудочков и следующую за ними общую паузу, называется **циклом сердечной деятельности.**

Фазы сердечного цикла

Признаки	Сокращение предсердий (систола)	Сокращение желудочков (систола)	Общее расслабление предсердий и желудочков (диастола)
Направление движения крови	Из предсердий в желудочки.	Из желудочков в аорту и легочную артерию.	Из вен в предсердия и желудочки.
Продолжительность фазы, сек	0,1	0,3	0,4
Состояние створчатых клапанов	открыты	закрыты	Открыты
Состояние полулунных клапанов	закрыты	открыты	закрыты

Механизмы регуляции сердечной деятельности

- 1. Внутрисердечные
 - 1. Миогенная саморегуляция
 - 2. Внутрисердечные рефлексы
- 2. Внесердечные
 - 1. Нервно-рефлекторные
 - 2. Гуморальные

Регуляция тонуса сосудов

- 1. Местный механизм
- 2. Нервный механизм регуляции
- 3. Гуморальный механизм

Сосудосуживающие гормоны

ГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ ТОНУСА СОСУДОВ

ВЕЩЕСТВА С ПРЕИМУЩЕСТВЕННО СОСУДОСУЖИВАЮЩИМ ЭФФЕКТОМ:

- норадреналин;
- адреналин
- вазопрессин (антидиуретический гормон);
- ангиотензин П;
- эндотелины;
- серотонин (5-гидрокситриптамин);
- PGF (простагландин F);
- дофамин

ВЕЩЕСТВА С ПРЕИМУЩЕСТВЕННО СОСУДОРАСШИРЯЮЩИМ ЭФФЕКТОМ:

- гистамин;
- ацетилхолин;
- брадикинин;
- предсердный натрийурегический пептид;
- PGI₂ (простациклин);
- NO (монооксид азота);
- PGA₁ (простагландин A₁);
- PGA₂ (медуллин);
- РGE (простагландин Е)