

Последовательность

Что такое последовательность? Признаки последовательности:

- 1. Элементы последовательности располагаются строго в определённом порядке.
- 2. **Каждому** члену последовательности можно присвоить порядковый **номер**.

Числовая последовательность

Каждому натуральномучислу п по некоторому правилу поставим в соответствие действительное число x_n . Тогда говорят, что задана числовая последовательность $x_1, x_2, x_3, ... x_n$.

Примеры числовых последовательностей

- 1, 2, 3, 4, 5, ... ряд натуральных чисел;
- 2, 4, 6, 8, 10, ... ряд чётных чисел;
- 1.4, 1.41, 1.414, 1.4142, ... числовая последовательность приближённых значений.

Способы задания числовой последовательности

1. Словесный способ.

Правила задания последовательности описываются словами, без указания формул (часто когда нет закономерности между элементами последовательности).

Пример 1. Последовательность простых чисел: 2,3,5,7,11,13,17,19,23,29,31,....

Пример 2. Произвольный набор чисел:

1,4,12,25,26,33,39,...

Пример 3. Последовательность четных чисел: 2,4,6,8,10,12,14,16,... .

2. Аналитический способ.

Пюбой п-й элемент последовательности можно определить **с помощью формулы**.

- Пример 1. Последовательность четных чисел: y = 2n.
- Пример 2. Последовательность квадратов натуральных чисел: $y = n^2$.
- *Пример 3.* Стационарная последовательность: y = C C, C, C, C, C,..., C,...
- Пример 4. Последовательность $y = n^2 3n$ -2, -2, 0, 4, 10, ...
- Пример 5. Последовательность $y = 2^n$ $2, 2^2, 2^3, ..., 2^n, ...$

3. Рекуррентный способ.

Указывается правило, позволяющее вычислить n-й элемент последовательности, если известен ее предыдущий элемент.

Пример 1.
$$a_1=3$$
 $a_{n+1}=4$ $a_1=3$ $a_3=9^2=81$ $a_2=3^2=9$ $a_4=81^2=6561$

Пример 2. Арифметическая прогрессия $a_{n+1} = a_n + d$, d - разность арифметической прогрессии.

Пример 3.Геометрическая прогрессия $b_{n+1} = bnq$, q – знаменатель геометрической прогрессии.

Числа Фибоначчи

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610...

Элементы числовой последовательности, в которой каждое последующее число равно сумме двух предыдущих чисел.

Последовательность Фибоначчи рекуррентно задать легко, а аналитически – трудно.

$$x_n = \frac{1}{\sqrt{5}} \cdot \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

Леонардо Фибоначчи - итальянский математик.

(родился около 1170 — умер после 1228)

Возрастание числовой последовательности

Последовательность $\{y_n\}$ называют возрастающей последовательностью, если каждый ее член больше предыдущего:

$$y_1 < y_2 < y_3 < y_4 < \dots < y_n < y_{n+1} < \dots$$

<u>Пример:</u> 1, 3, 5, 7, 9, 2п-1, ... - возрастающая последовательность.

Убывание последовательности

Последовательность {y_n} называют убывающей последовательностью, если каждый ее член меньше предыдущего:

$$y_1 > y_2 > y_3 > y_4 > \dots > y_n > y_{n+1} > \dots$$

<u>Пример:</u> 1, 1/3, 1/5, 1/7, 1/(2п–1), ... - убывающая последовательность.

Возрастающие и убывающие

последовательности называют

монотонными

Последовательность (y_n) , называют ограниченной сверху, если все ее члены не больше некоторого числа.

Последовательность (*y_n*) <u>ограничена сверху</u>, если существует число *M* такое, что для любого *n* выполняется неравенство *y_n* ≤ *M*. Число *M* называют верхней границей последовательности.

<u>Например:</u> -1, -4, -9, -16,..., - n^2 ,...

Верхняя граница - -1

Последовательность (*y_n*), называют *ограниченной снизу*, если все ее члены не меньше некоторого числа.

Последовательность (y_n) ограничена снизу, если существует число m такое, что для любого n выполняется неравенство $y_n \ge m$. Число m называют нижней границей последовательности.

Например: $1, 4, 9, 16, ..., n^2, ...$

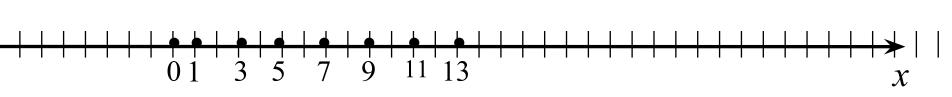
Нижняя граница - 1

Если последовательность *ограничена и снизу и сверху*, то ее *называют* ограниченной последовательностью.

Ограниченность последовательности означает, что все члены последовательности принадлежат

Члены последовательности (у_п) как бы «**сгущаются**» около точки 0. Говорят последовательность (у_п) **сходимся**.

$$y_n = 2n - 1$$



У последовательности (у_п) такой **«точки сгущения» нет**. Говорят **последовательность** (у_п) расходится.