Средняя квадратическая величина

Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменной сумму квадратов исходной величин, то средняя будет являться квадратической средней величиной.

$$\overline{X}_{\kappa e} = \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n}}$$

Например, имеются три участка земельной площади со сторонами квадрата: X 1 – 100 м, X 2 – 200 м, X 3 – 300 м.

 Правильный ответ дает квадратическая средняя:

$$\overline{X}\kappa e = \sqrt{\frac{(100)^2 + (200)^2 + (300)^2}{3}} = 216M$$

Средняя гармоническая

- Иногда при определении средних величин пользуются не их отдельными значениями, а обратными величинами.
- *Обратные* такие значения, которые при увеличении определяющего показателя уменьшаются, а при уменьшении увеличиваются.
- *Прямые* показатели, которые прямо пропорциональны изучаемому явлению.

Прямые (х)	Обратные (1/х)			
Производительность труда				
Выработка в единицу	Затраты времени на единицу			
времени	продукции			
Использование основных фондов				
Фондоотдача	Фондоемкость			
Продуктивность земли				
Урожайность	Землеемкость			
Оборачиваемость оборотных средств				
Коэффициент	Коэффициент закрепления			
оборачиваемости	оборотных средств			
Использование сырья, материалов, топлива				
Выход продукции на единицу	Расход сырья, материалов,			
сырья, материалов,	топлива на единицу			
топлива	продукции			

Средняя гармоническая - величина обратная средней арифметической из обратных величин.

$$\overline{X}ap.np = \frac{\sum x}{n}$$
 ,тогда \overline{X} гарм = $\frac{n}{\sum 1/x}$

Пример.

Цеха	Ср.мес. заработная плата, руб.	Фонд заработной платы, тыс.руб.
1	36000	7200
2	40000	6600
3	35000	5600

фонд заработной платы

Число рабочих = средняя месячная заработная плата

$$X = \frac{w_1 + w_2 + w_2}{\frac{w_1}{x_1} + \frac{w_2}{x_2} + \frac{w_3}{x_3}} 36800$$

Средняя гармоническая взвешенная

Средняя гармоническая взвешенная употребляется в тех случаях, когда необходимые веса (частоты) в исходных данных не заданы, а входят сомножителем в один из известных показателей.

$$\overline{X} cap.63. = \frac{\sum w}{\sum w/x}$$

Средняя геометрическая

Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменным произведение индивидуальных величин, то следует применять среднюю геометрическую величину.

Пример. Имеются данные о прибыли предприятия за ряд лет:

	2001	2002	2003	2004
Прибыль Коэффициент роста прибыли	Y ₁ =20	$Y_2 = 30$ $K_1 = 1,5$	$Y_3 = 60$ $K_2 = 2$	$Y_4 = 120$ $K_3 = 2$

Найти средний годовой коэффициент роста прибыли.

K1*K2*K3 = Y2 / Y1 * Y3 / Y2 * Y4 / Y3

Заменим отдельные значения коэффициентов их средними значениями:

K*K*K = K1*K2*K3 = Y4 / Y1

К3 = К1*К2*К3 = У4 / У1, тогда К = $3\sqrt{ K1*K2*K3} = 3\sqrt{ У4}$ / У1

 $X \epsilon o M = \sqrt[n]{K_1 \times K_2 \times ... \times K_n}$

,где n – количество коэффициентов, а К – статистический коэффициент роста или снижения показателей.

 \overline{X} eeo $M = n \sqrt{\frac{Y_n}{V_1}}$

Если в условиях задачи абсолютные значения показателей заданы, то средняя геометрическая:

 $K = \sqrt[3]{1,5 \times 2 \times 2}$ = 1,63 Вывод: средний годовой темп роста прибыли на предприятии составляет 163%.

Правило мажирантности средних

$$\left(\overline{X}_{\mathit{гарм}} \leq \overline{X}_{\mathit{геом}} \leq \overline{X}_{\mathit{арифм}} \leq \overline{X}_{\mathit{квадр}} \leq \overline{X}_{\mathit{куб}}\right)$$