РЕШЕНИЕ ЗАДАЧ

Прямолинейное движение тела в вертикальном направлении

Это тоже прямолинейное равноускоренное движение, значит все формулы для равноускоренного движения в горизонтальном направлении подходят и для данного вида движения, с учетом что ускорение д всегда направлено вниз.

1

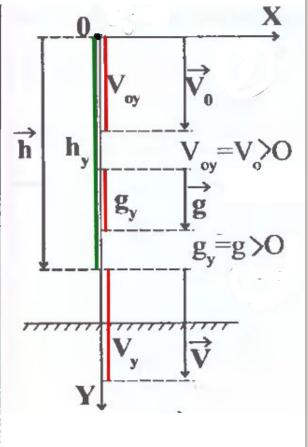
2

3

4

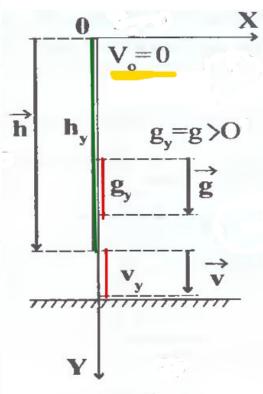
5

6

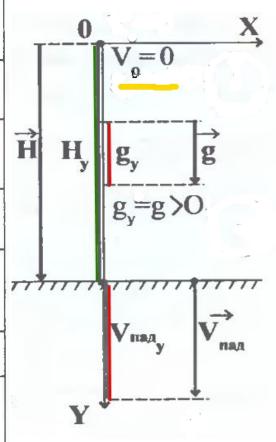

7

8

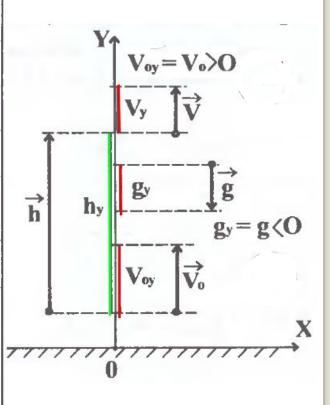
9


Тело брошено вертикально вниз с начальной скоростью отличной от нуля.

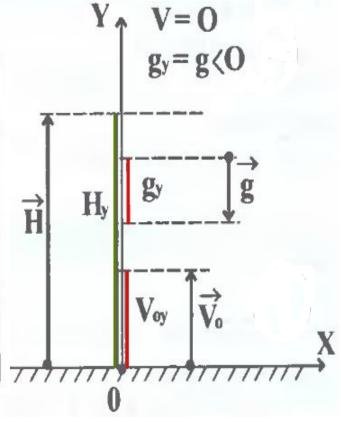
Вектор перемещения	$\overrightarrow{h} = \overrightarrow{V_0}t + \frac{\overrightarrow{gt^2}}{2}$
Вектор мгновенной (текущей) скорости	$\overrightarrow{V} = \overrightarrow{V_0} + \overrightarrow{gt}$
Проекция вектора перемещения на ось ординат	$h_y = V_{0y}t + \frac{g_y t^2}{2}$
Проекция вектора мгновенной (текущей) скорости на ось ординат	$V_y = V_{0y} + g_y t$
Модуль вектора перемещения	$h = V_0 t + \frac{gt^2}{2}$; $h = \frac{V^2 - V_0^2}{2g}$
Модуль вектора мгновенной (теку- щей) скорости	$V = V_0 + gt$
Решение основной задачи механики в случае движения тела, брошенного вертикально вниз: зависимость мгно-	$y = y_0 + V_0 t + \frac{gt^2}{2};$
венного значения пространственной координаты от значения временной координаты	$y = y_0 + \frac{V^2 - V_0^2}{2g}$


Тело свободно падает с начальной скоростью равной нулю.

Вектор перемещения	$\overrightarrow{h} = \frac{\overrightarrow{g}^2}{2}$
Вектор мгновенной (текущей) скорости	$V = \overrightarrow{gt}$
Проекция вектора перемещения на ось ординат	$h_y = \frac{g_y t^2}{2}$; $h_y = \frac{V_y^2}{2g}$
Проскция вектора мгновенной (те- кущей) скорости на ось ординат	$V_y = g_y t$
Модуль вектора персмещения	$h = \frac{g_y t^2}{2}$; $h = \frac{V_y^2}{2g}$
Модуль вектора мгновенной (теку- щей) скорости	, V = gt
Решение основной задачи механики в случае движения тела, брошенного вертикально вниз с начальной скоростью, равной нулю: зависимость мгновенного значения пространственной координаты от значения временной координаты	$y = y_0 + \frac{gt^2}{2};$ $y = y_0 + \frac{V^2}{2g}$


Тело свободно падает с начальной скоростью равной нулю, с определенной высоты. Расчет скорости и времени падения.

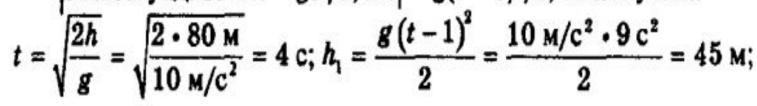
Вектор наибольшего перемещения	$\overrightarrow{H} = \frac{\overrightarrow{gt}_{\text{nagn}}^2}{2}$
Вектор скорости падения	$\overrightarrow{V}_{\text{пад}} = \overrightarrow{gt}_{\text{пад}}$
Проекция вектора наибольшего перемещения на ось ординат	$H_{y} = \frac{g_{y}t_{nad}^{2}}{2}; H_{y} = \frac{V_{nag}^{2}}{2g_{y}}$
Проекция вектора скорости падения на ось ординат	$V_{\text{nag}_y} = g_y t_{\text{nag}}$
Модуль вектора наибольшего перемещения	$H = \frac{gt_{man}^2}{2}; H = \frac{V_{man}^2}{2g}$
Модуль вектора скорости падения	$V_{\text{пад}} = gt_{\text{пад}}; V_{\text{пад}} = \sqrt{2gH}$
Время падения тела	$t_{\text{пад}} = \sqrt{\frac{2H}{g}}$


Тело брошено вертикально вверх.

Вектор перемещения	$\overrightarrow{h} = \overrightarrow{V_0}t + \frac{\overrightarrow{gt}^2}{2}$
Вектор мгновенной (текущей) скорости	$\overrightarrow{V} = \overrightarrow{V}_0 + \overrightarrow{gt}$
Проекция вектора перемещения на ось ординат	$h_y = V_{0y}t + \frac{g_y t^2}{2}$; $h_y = \frac{V_{0y}^2 - V_y^2}{2g_y}$
Проекция вектора мгновенной (текущей) скорости на ось ординат	$V_{y} = V_{0y} + g_{y}t$
Модуль вектора перемещения	$h = V_0 t - \frac{gt^2}{2}$; $h = \frac{V_0^2 - V^2}{2g}$
Модуль вектора мгновенной (те- кущей) скорости	$V = V_0 - gt$
Решение основной задачи механики в случае движения тела, брошенного вертикально вверх:	$y = y_0 + V_0 t - \frac{gt^2}{2};$
зависимость мгновенного значения пространственной координаты	$y = y_0 + \frac{V_0^2 - V^2}{2g}$

Тело брошено вертикально вверх и достигает точки наивысшего подъема.

Модуль вектора начальной скорости	$V_0 = gt_{max}$
Модуль вектора наибольшего (мак- симального) перемещения	$H = \frac{V_0^2}{2g}$
Время подъема тела до наивысшей точки траектории	$t_{\text{NOA}} = \frac{V_0}{g}$
Время полета тела при условии его возвращения в исходную точку	$t_{\text{mon}} = 2t_{\text{non}}, t_{\text{mon}} = 2\frac{V_0}{g}$


Задача. Тело свободно падает с высоты 80 м. Каково его перемещение в последнюю секунду падения?

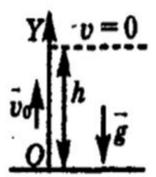
Показать решение

Дано: h = 80 M $v_0 = 0$ $\Delta h - ?$

Решение:

Для определения перемещения Δh в последнюю се $g = 10 \text{ м/c}^2$ кунду падения можно воспользоваться формулой $\Delta h = h - h_1$. Здесь h = 80 м, т. е. перемещение тела за время t; h_1 — перемещение тела за время (t-1) первых секунд. Т. к. $h = gt^2/2$, а $h_1 = g(t-1)^2/2$, то получим:

$$\Delta h = h - h_1 = 80 \text{ m} - 45 \text{ m} = 35 \text{ m}.$$


OTBET: $\Delta h = 35 \text{ M}$.

9

Задача. Стрела, выпущенная из лука вертикально вверх, упала на землю через 6с. Какова начальная скорость стрелы и максимальная высота подъема?

Показать решение

Дано:
$$t = 6 \text{ с}$$
 Воспользуемся уравнением: $y = v_{0y}t_1 + \frac{g_y t_1^2}{2}$. Тело движется вверх, уравнение примет вид: $y = h = v_0 t_1 - \frac{g t_1^2}{2}$,

здесь t_1 — время подъема тела.

Конечная скорость при подъеме тела равна 0, т. е.

$$v_y = v_0 y + g_y t_1 \Rightarrow v_0 - g t_1 = 0 \Rightarrow v_0 = g t_1.$$

Время подъема тела равно времени его падения, т. е.

$$2t_1 = 6 c \Rightarrow t_1 = 3 c.$$

Найдем скорость и максимальную высоту подъема:

$$v_0 = 3 c \cdot 10 \text{ m/c}^2 = 30 \text{ m/c};$$

 $h = 30 \text{ m/c} \cdot 3 c - \frac{10 \text{ m/c}^2 \cdot 9 c^2}{2} = 45 \text{ m}.$

OTBET: $v_0 = 30 \text{ m/c}, h = 45 \text{ m}.$

1 Вариант

- 1. С высоты отвесного обрыва начинает свободно падать камень. Какую скорость он будет иметь через 5 с после начала падения?
- **2.** Тело брошено от земли вертикально вверх со скоростью 9 м/с. На какой высоте скорость тела уменьшится в 3 раза.

2 Вариант

1. Найдите конечную скорость тела при его свободном падении с высоты 45 м.

2. Тело брошено вертикально вверх с начальной скоростью 20 м/с. Чему будет равен модуль скорости тела через 0,5 с после начала движения?

1 2 3 4 5 6 7 8 9 10

ОТВЕТЫ

1 Вариант

2 Вариант

1. 50 M/C

1. 30 M/C

2. 3,6 M

2. 15 M/C

1

2

3

4

5

6

7

8

9