Московский физико-технический институт Факультет биологической и медицинской физики Кафедра молекулярной и трансляционной медицины

Исследование влияния антимикробных пептидов пиявки *Hirudo medicinalis* на нейтрофилы человека (бакалаврская работа, 2018-2019 учебный год)

Студент: Меняйло Е.А.

Научный руководитель: Панасенко О. М., д-р биол.наук,

проф.

Консультант: Вахрушева Т.В., канд. биол. наук, с.н.с.

Работа выполнена в лаборатории физико-химических методов исследований и анализа ФНКЦ ФХМ ФМБА России

Москва, 2019

Актуальность и обоснование работы

В связи с развитием резистентности микроорганизмов к традиционным антибиотикам необходимы новые антимикробные препараты. Перспективными в этом отношении считаются катионные антимикробные пептиды (АМП), к которым, как правило, не развивается резистентность.

К АМП пиявки как потенциальному лекарству имеется особый интерес. Поскольку пиявка как кровососущий организм, использующий теплокровных животных, включая человека, эволюционировала одновременно с ними и синтезировала соответствующие АМП для своей защиты, то можно полагать, что её АМП могут быть полезны для медицинских целей борьбы с бактериальными инфекциями человека.

Поскольку в очаге инфекции АМП будут соседствовать с нейтрофилами, то необходимо в тестирование АМП как потенциального лекарства включить исследование их взаимодействия с нейтрофилами.

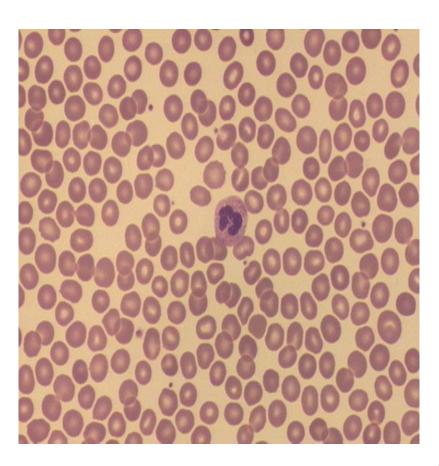
Катионные АМП, использованные в работе

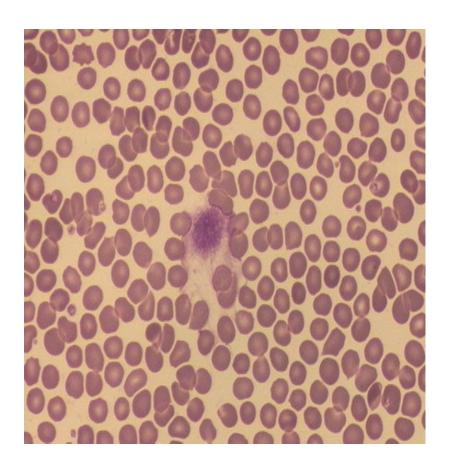
Пептиды были синтезированы на основе биоинформатического анализа генома пиявки *Hirudo medicinalis* в лаб. генной инженерии (зав. лаб. докт. биол. наук, проф. В.Н. Лазарев) ФНКЦ ФХМ ФМБА России.

Код	Аминокислотная последовательность	Длина	Заряд	МИК,
				мкМ
3967_1	Phe-Arg-Ile-Met-Arg-Ile-Leu-Arg-Val-Leu-Lys	11	+4	10
12530	Lys-Phe-Lys-Lys-Val-Ile-Trp-Lys-Ser-Phe-Leu	11	+4	90
536_1	Arg-Trp-Arg-Leu-Val-Cys-Phe-Leu-Cys-Arg-Arg-Lys-Lys-Val	14	+6	17

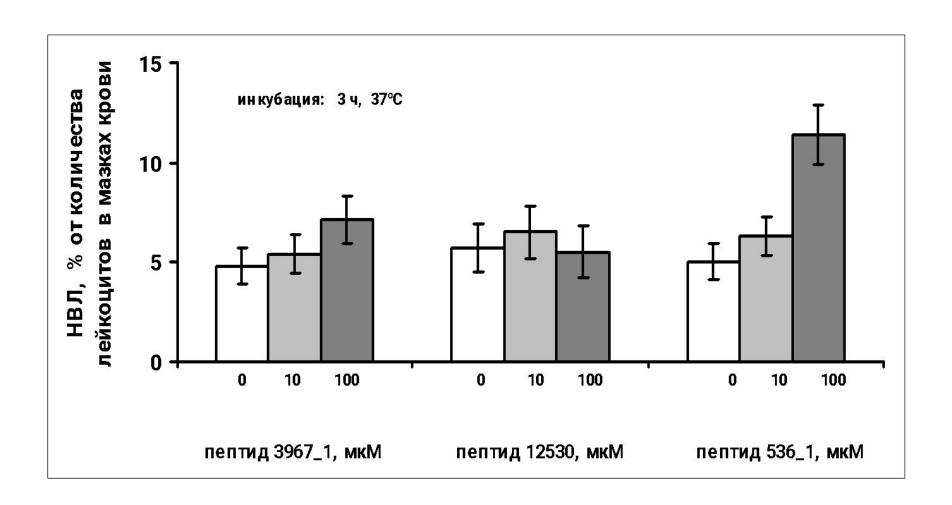
Цели и задачи исследования

Цель

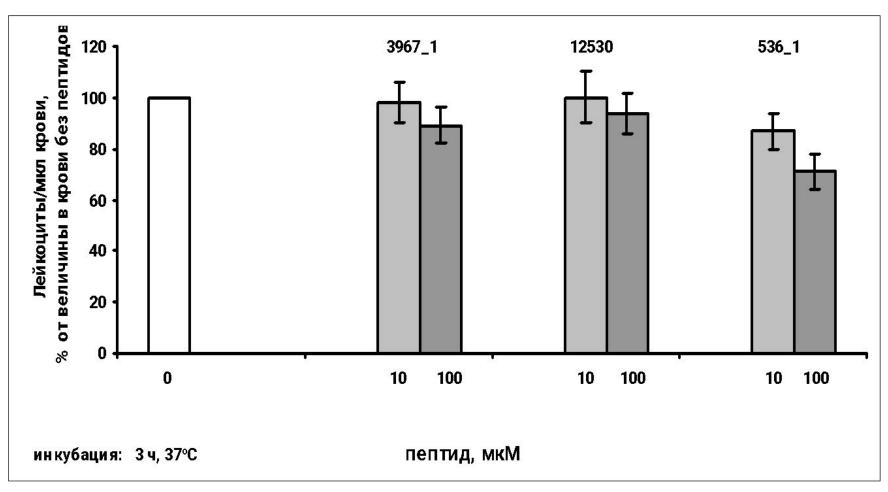

Исследование взаимодействия между пептидами и нейтрофилами на трех уровнях:

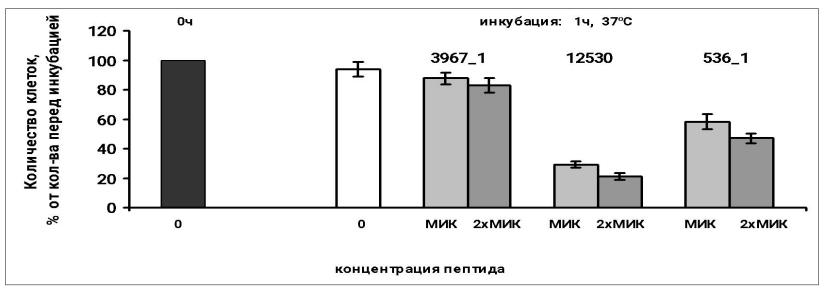

- Целая клетка
- Миелопероксидаза (МПО), секретируемая активированными нейтрофилами
- HOCl хлорноватистая кислота, образующаяся в организме в результате хлорирующей активности МПО при катализе реакции $Cl^- + H_2O_2 \rightarrow HOCl + H_2O_3$

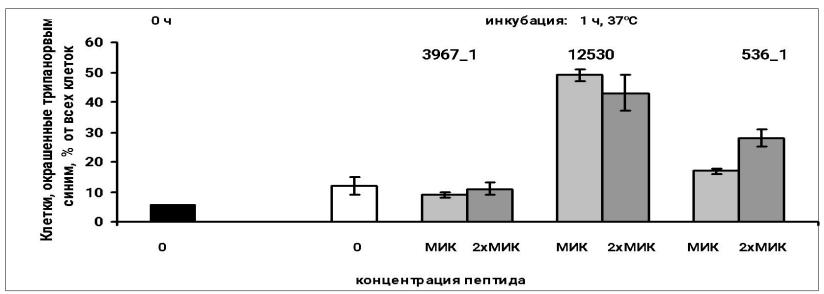
Конкретные задачи


- Влияние пептидов на образование нейтрофильных внеклеточных ловушек (в цельной крови) и на жизнеспособность нейтрофилов (изолированные клетки)
- •Влияние пептидов на хлорирующую активность МПО
- •Влияние HOCl на структуру пептидов

Нейтрофил (слева) и нейтрофильная внеклеточная ловушка (справа) на фотографиях мазков крови




Пептид 536_1 в цельной крови усиливает образование нейтрофильных внеклеточных ловушек (НВЛ)



Пептид 536_1 в цельной крови вызывает уменьшение числа лейкоцитов

Влияние пептидов на жизнеспособность нейтрофилов (в суспензии изолированных нейтрофилов)

Оценка хлорирующей активности МПО

Метод taurine chloramine assay [Kettle, 1994]. Метод основан на реакции HOCl с таурином с образованием хлорамина таурина, который затем измеряется по реакции с тионитробензойной кислотой, которая в результате теряет поглощение (412 нм).

Как и другие методы измерения HOCl, продуцированной МПО, этот метод имеет ограничения, связанные с присутствием в среде веществ, способных перехватывать HOCl у таурина (константа скорости реакции таурина с HOCl $k = 5.0 \times 10^5 \, \text{M}^{-1} \text{c}^{-1}$ при нейтральном pH).

В исследуемых пептидах есть аминокислотные остатки, быстро реагирующие с носі.

Константы скорости реакции (нейтральный рН):

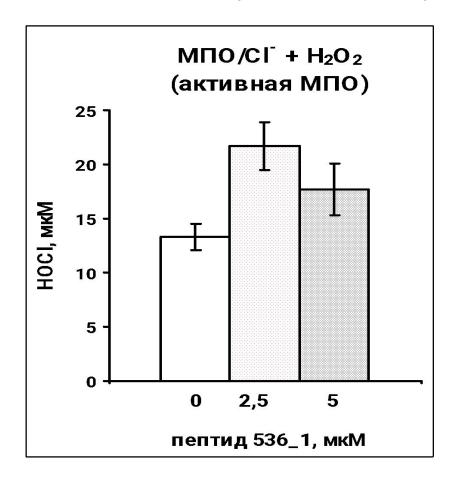
Cys $3,6 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$

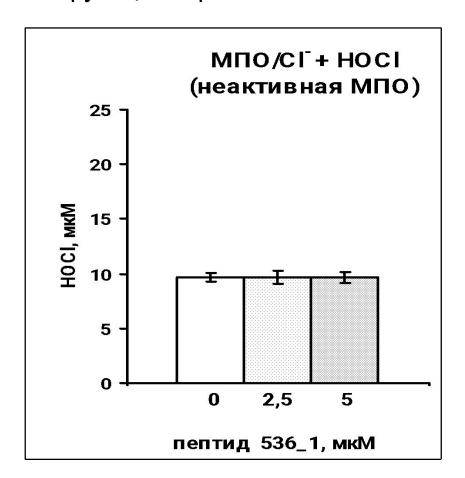
Met $3,4 \times 10^7 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$

Trp $7.8 \times 10^4 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$

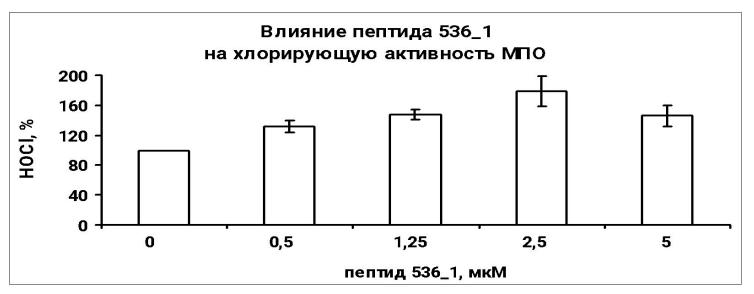
Lys $7.9 \times 10^3 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$

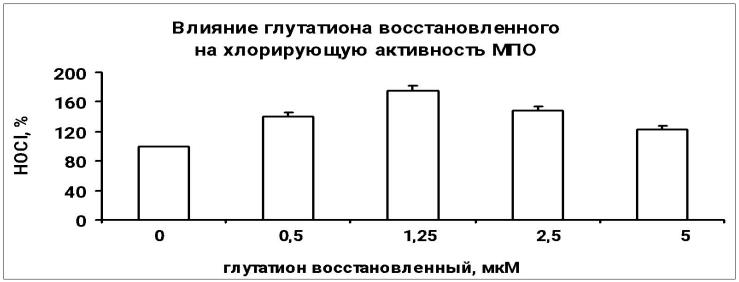
Наши контрольные эксперименты по измерению HOCl, добавленной в виде реагента (вместо $M\PiO/H_2O_2$) показали, что пептиды до концентрации примерно 5 мкМ не "мешают" измерять концентра \mathbf{Q} ию HOCl в присутствии 40 мМ таурина.


Влияние пептидов на хлорирующую активность МПО


Концентрация пептида	Пептид 3967_1	Пептид 12530	Пептид 536_1
0 мкМ	100%	100%	100%
0,5 мкМ	100%	100%	132 ± 8%
1 мкМ	100%	100%	$148 \pm 7\%$
2,5 мкМ	$110 \pm 3\%$	$109 \pm 4\%$	$179 \pm 20\%$
5 мкМ	$108 \pm 7\%$	$118 \pm 8\%$	$146 \pm 14\%$

Измерялось количество HOCl, образовавшееся в первые 2,25 мин после добавления


25 мкМ H_2O_2 к 3,5 нМ МПО и 140 мМ Cl^- . В отсутствии пептидов МПО за это время утилизировала примерно половину добавуленного H_2O_2 .


Регистрация повышенного количества HOCl в среде, содержащей систему MПO/Cl⁻/H₂O₂ в присутствии пептида 536_1, связана именно с HOCl, образующейся в результате функционирования МПО

Сравнение влияния пептида 536_1 и глутатиона восстановленного на хлорирующую активность МПО

Влияние пептидов на пероксидазную активность МПО

Влияния не было обнаружено. Пероксидазная активность МПО измерялась с использованием *о*-дианизидина в качестве субстрата по кинетике поглощения окисленного *о*-дианизидина при 650 нм.

Возможный механизм "активирующего" действия пептида 536_1 на хлорирующую активность МПО

НОСІ может прореагировать с молекулой МПО, вызывая инактивацию. Вещества, способные к реакции с НОСІ, могут, перехватывая НОСІ, "спасать" МПО от этой самоинактивации. Такая роль есть у таурина в методах измерения хлорирующей активности. Возможно, тиоловая группа цистеина, скорость реакции которой с НОСІ на три порядка выше, чем у таурина, настолько эффективно перехватывает НОСІ, что может дополнительно существенно предохранить МПО от модификации и самоинактивации, что проявляется в ускорении продукции НОСІ в растворе МПО.

MALDI-масс-спектрометрия

Если предполагать использование АМП в качестве медицинского препарата, то следует учитывать, что вследствие наличия в них определенных аминокислот они в очаге инфекции окажутся мишенями для HOCl, генерируемой активированными нейтрофилами. В связи с этим была поставлена задача определить изменения в структуре пептидов под воздействием HOCl и получить сравнительную оценку их устойчивости к HOCl. Для решения этой задачи был использован метод MALDI-масс-спектрометрии.

Образцы готовили, инкубируя пептиды (5 мкМ) с возрастающими концентрациями HOCl. Мольное отношение HOCl:пептид было от 1:1 до 50:1. При этом наибольшее мольное отношение HOCl:реакц.группы составило 10:1.

Лизи н

Цистеи н

Метиони н

Продукты реакций пептидов с HOCl, идентифицированные в спектрах MALDI

пептид 3967_1		пептид 12530		пептид 536_1	
(1 Met u 1 Lys)		(1 Trp u 4 Lys)		(2 Cys, 1 Trp u 2 Lys)	
m/z		m/z		m/z	
1445.095	нативный	1423.051	нативный	1860.432	нативный
	пептид [М]		пептид [М]		пептид [М]
1467.040	нативный	1444.902	нативный		
	пептид [M + Na]		пептид [M + Na]		
1461.058	[M + O]	1439.077	[M + O]	1876.084	[M + O]
1483.002	[M + Na + O]	1461.055	[M + Na + O]	1891.085	[M + 2O]
1477.009	[M + 2O]	1455.175	[M + 2O]	1908.021	[M + 3O]
1499.006	[M + Na +2O]	1476.976	[M + Na + 2O]	1924.173	[M + 4O]
1494.960	[M + O + Cl - H]	1472.943	[M + O + Cl - H]	1940.164	[M + 5O]
1510.948	[M + 2O + Cl - H]	1506.926	[M + O + 2Cl - 2H]	1956.226	[M + 6O]
		1575.000	[M+O+4Cl-4H]	1971.624	[M + 7O]
		1591.064	[M + 2O + 4Cl - 4H]	1988.090	[M + 8O]

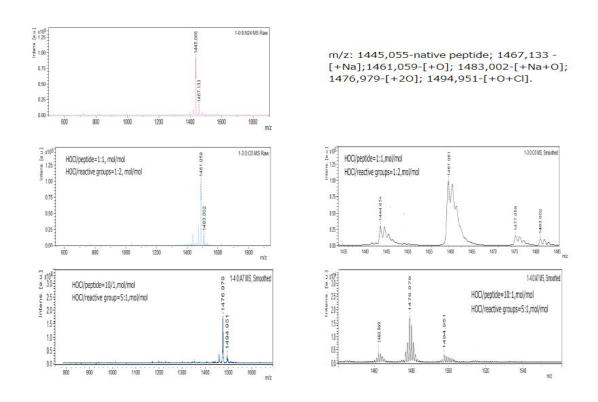
По мере увеличения концентрации HOCl пик нативного пептида уменьшался до полного исчезновения. Однако в случае пептидов 3967_1 и 12530 еще сохранялась целостность полипептидной цепи. Пептид 536_1 оказался наименее стойким к воздействию HOCl: при HOCl:пептид = 5:1 (моль/моль) происходило разрушение полипептидной цепи на фрагменты.

Выводы

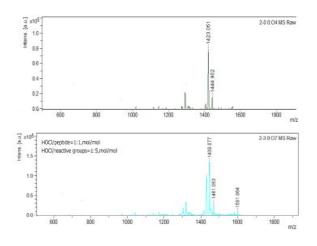
- 1. В цельной крови пептид 536_1 усиливал образование нейтрофильных внеклеточных ловушек и вызывал уменьшение числа лейкоцитов. Пептиды 3967_1 и 12530 не проявили достоверного эффекта.
- 2. В суспензии изолированных нейтрофилов пептиды 12530 и 536_1 при концентрациях равной их МИК вызывали уменьшение числа живых клеток (на 70% и 30%, соответственно, через 1 ч инкубации при 37оС). Количество живых клеток после инкубации с пептидом 3967_1 не отличалось достоверно от их количества в контроле.
- 3. В присутствии пептида 536_1 возрастала скорость продукции HOCl миелопероксидазой.
- 4. В пептидах, обработанных HOCl, происходило образование продуктов оксигенирования и хлорирования. Пептид 536_1 оказался наименее устойчивым к HOCl, распадаясь на фрагменты, тогда как пептиды 396_1 и 12530 при аналогичном мольном отношении HOCl/пептид сохраняли полипептидную цепь целой.

Результаты позволяют предложить пептид 3967_1 как более подходящий по сравнению с пептидами 12530 и 536_1 для дальнейшего усовершенствования структуры, повышающего её устойчивость в условиях активации нейтрофилов и уменьшающего негативное влияние на эти клетки.

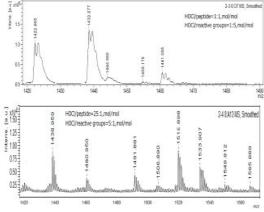
Результаты работы были представлены на 3-ем Сеченовском Международном Биомедицинском Саммите: E.A. Menyaylo *et al*. Novel cationic antimicrobial peptides of *Hirudo medicinalis* and their initial evaluation as potential medicinal agents. 3rd Sechenov International Biomedical Summit (SIBS 2019). May 20-21, 2019. Sechenov University, Moscow, Russia. P-30.

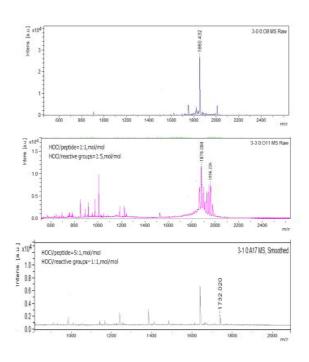

Тезисы будут опубликованы в открытом электронном журнале Biomedicine HUB.

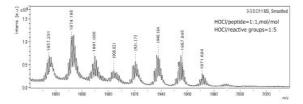
Благодарности


Сотрудникам лаборатории физико-химических методов исследования и анализа,

- Д. С. Матюшкиной (лаб. простых систем) за помощь в проведении MALDI,
- С. А. Гусеву и Л. Ю. Басыревой (лаб. морфологии) за обучение методике измерения нейтрофильных внеклеточных ловушек в крови


MALDI spectra of peptide P1 before and after treatment with HOCl


MALDI spectra of peptide P2 before and after treatment with HOCl


m/z: 1423,051-native peptide; 1444,902-[+Na]; 1439,077-[+O]; 1591,064-[+4Cl+2O]; 1455,175-[+ 2O]; 1461,055-[+Na+O]; 1506,926-[+O+2Cl].

MALDI spectra of peptide P3 before and after treatment with HOCl

m/z: 1860,432- native peptide; 1956,226-[+60];1876,084-[+0]; 1891,085-[+20];1908,021-[+30]; 1924,173-[+40];1940,164-[+50]; 1957,045-[+60];1971,624-[+70].

