
COMP290-084
Clockless Logic

Prof. Montek Singh

Jan. 29, 2004



Acknowledgment

Michael Theobald and Steven Nowick, 

for providing slides for this lecture.



 An Implicit Method for Hazard-Free
 Two-Level Logic Minimization
Michael Theobald and Steven M. Nowick 

Columbia University, New York, NY

Paper appeared in Async-98 

(Best Paper Finalist)



☹

Hazard-Free Logic Minimization 

?

Given: Boolean function and multi-input change  



☺

Hazard-Free Logic Minimization



☺

Hazard-Free Logic Minimization

☹f(A) 🡺  f(B)

0 🡺  0

0 🡺  1 

1 🡺  1

1 🡺  0



☺

Hazard-Free 2-Level Logic Minimization



Classic 2-Level Logic Minimization  

Step 1. Generate Prime Implicants 0   0 
0   1 
1   1
1   0

Karnaugh-Map:

1’s: “Minterms”

  
Ovals: “Prime Implicants”

Step 2. Select Minimum # of Primes …to cover all Minterms 

Prime implicants 

M
in

te
rm

s

Quine-McCluskey Algorithm



2-level Logic Minimization:
Classic vs. Hazard-Free   

■ Classic (Quine-McCluskey): 

<On-set minterms, Prime implicants>

■ Hazard-Free: 

<Required cubes, DHF-Prime implicants>

– Given: Boolean function & set of  “multi-input” changes

– Find: min-cost  2-level implementation guaranteed to be glitch-free

– Required cubes = sets of minterms 

– DHF-Prime implicants = 

maximal implicants that do not intersect privileged cubes illegally 



Hazard-Free Logic Minimization

■ Non-monotonic

– function hazard
– no implementation
   hazard-free  

■ Monotonic

– function-hazard-free

0       0        0      0 

0       1        1      0

1       1        0      0

1       0        0      0 ☺

☹

Restriction to monotonic changes

Multi-Input Changes:



Hazard-Freedom Conditions: 1 -> 1 transition

0       0        0      0 

0       1        0      0

0       1        0      0

0       1        _     0

☺☹

0       0        0      0 

0       1        0      0

0       1        0      0

0       1        _      0

Required Cube
must be covered



Hazard-Freedom Conditions: 1 -> 0 transition

0       0        0      0 

0       1        1      0

0       1        0      0

0       1        0      0



Hazard-Freedom Conditions: 1 -> 0 transition

0       0        0      0 

0       1        1      0

0       1        0      0

0       1        0      0



Hazard-Freedom Conditions: 1 -> 0 transition

0       0        0      0 

0       1        1      0

0       1        0      0

0       1        0      0



Hazard-Freedom Conditions: 1 -> 0 transition

0       0        0      0 

0       1        1      0

0       1        0      0

0       1        0      0



Hazard-Freedom Conditions: 1 -> 0 transition

0       0        0      0 

0       1        1      0

0       1        0      0

0       1        0      0



Hazard-Freedom Conditions: 1 -> 0 transition

0       0        0      0 

0       1        1      0

0       1        0      0

0       1        0      0

☹



Hazard-Freedom Conditions: 1 -> 0 transition

0       0        0      0 

0       1        1      0

0       1        0      0

0       1        0      0

☹ 
illegal intersection



Hazard-Freedom Conditions: 1 -> 0 transition

0       0        0      0 

0       1        1      0

0       1        0      0

0       1        0      0

0       0        0      0 

0       1        1      0

0       1        0      0

0       1        0      0

☺ No illegal 
intersection

of privileged cube

☹
illegal intersection



Dynamic-Hazard-Free Prime Implicants

0   0 
0   1 
1   1
1   0

Prime

0   0 
0   1 
1   1
1   0

NO DHF-Prime
illegal 

intersection

0   0 
0   1 
1   1
1   0

DHF-Prime



2-level Logic Minimization:
Classic vs. Hazard-Free   

■ Classic (Quine-McCluskey): 

<On-set minterms, Prime implicants>

■ Hazard-Free: 

<Required cubes, DHF-Prime implicants>

– Given: Boolean function & set of  “multi-input” changes

– Find: min-cost  2-level implementation guaranteed to be glitch-free

– Required cubes = sets of minterms 

– DHF-Prime implicants = 

maximal implicants that do not intersect privileged cubes illegally 

Main challenge: Computing DHF-prime implicants



Hazard-Free 2-level Logic Minimization:
Previous Work   

■ Early work (1950s-1970s):  

– Eichelberger, Unger, Beister, McCluskey    

■ Initial solution:  Nowick/Dill [ICCAD 1992] 

■ Improved approaches:

– HFMIN: Fuhrer/Nowick [ICCAD 1995]

– Rutten et al. [Async 1999]

– Myers/Jacobson [Async 2001]

No approach can solve large examples 



IMPYMIN: an exact 2-level minimizer 

■ Two main ideas: 

– novel reformulation of  hazard-freedom constraints
• used for dhf-prime generation
• recasts an asynchronous problem as a synchronous one

– uses an “implicit” method

• represents & manipulates large # of objects 
simultaneously 

• avoids explicit enumeration 
• makes use of BDDs, ZBDDs

■ Outperforms existing tools by orders of magnitude



Review: Primes vs. DHF-Primes
Classic (Quine-McCluskey): 

<On-set minterms, Prime implicants>
Hazard-Free:                

<Required cubes, DHF-Prime implicants>

DHF-Prime Implicants = maximal implicants that do not intersect 
“privileged cubes” illegally 

Primes

0   0 
0   1 
1   1
1   0

0   0 
0   1 
1   1
1   0

DHF-Primes



Topic 1: New Idea 
■ Challenge: Two types of constraints  

– maximality constraints:  “we want maximally large implicants”
– avoidance constraints:  “we must avoid illegal intersections”

DHF-Prime Generation

■ New Approach: Unify constraints by “lifting” the 
problem into a higher-dimensional space: 

g(x1, …, xn, z1, …, zl)       maximality     

     f(x1,…,xn), T            maximality & avoidance constraints     

                                        



0   0 
0   1 
1   1
1   0

Auxiliary Synchronous Function g

0   0      
0   1    
1   1     
1   0    

    0    0 
    1    0
    0    0
    0    0

z=0 z=1

Add one new dimension per privileged cube 

0-half-space: g is defined as f 

1-half-space: g is defined as f 
                    BUT priv-cube is   
                    filled  with 0’s

 f

g



0   0 
0   1 
1   1
1   0

0   0     0    0 
0   1     1    0
1   1     0    0
1   0     0    0

Prime Implicants of g 

Expansion in z-dimension
guarantees avoidance 
of priv-cube in original domain

 f

g



0   0 
0   1 
1   1
1   0

0   0     0    0 
0   1     1    0
1   1     0    0
1   0     0    0

Prime Implicants of g 

Expansion in x-dimension 
corresponds to enlarging cube

 in original domain.

 f

g



Summary: Auxiliary Synchronous Function g
The definition of auxiliary function g exactly ensures :

■ Expansion in a z-dimension corresponds to avoiding 

the privileged cube in the original domain.

■ Expansion in a x-dimension corresponds to enlarging 

the cube in the original domain.



New approach: DHF-Prime Generation
Goal: Efficient new method for DHF-Prime generation

Approach: 

– translate original function f into synchronous function g
– generate Primes(g)
– after filtering step, retrieve dhf-primes(f) 



0   0 
0   1 
1   1
1   0

0   0     0    0 
0   1     1    0
1   1     0    0
1   0     0    0

Prime Generation of g 

 f

g

Prime implicants of g 



0   0 
0   1 
1   1
1   0

0   0     0    0 
0   1     1    0
1   1     0    0
1   0     0    0

0   0     0    0 
0   1     1    0
1   1     0    0
1   0     0    0

Filtering Primes of g

Filter

Lifting

Prime implicants of g 

3  classes of primes of synchronous fct g:

– 1. do not intersect priv-cube 
   (in original domain)

– 2. intersect legally
– 3. intersect illegally  

Transforming Prime(g) into DHF-Prime(f,T):

 f

g



0   0 
0   1 
1   1
1   0

0   0 
0   1 
1   1
1   0

0   0     0    0 
0   1     1    0
1   1     0    0
1   0     0    0

0   0     0    0 
0   1     1    0
1   1     0    0
1   0     0    0

Projection 

Projection

Filter

Lifting

Prime implicants of g 

 f

g

  DHF-Prime(f,T)



Formal Characterization of DHF-Prime(f,T)



IMPYMIN
■ CAD tool for Hazard-Free 2-Level Logic 

■ Two main ideas:

– Computes DHF-Primes in higher-dimension space
– Implicit Method: makes use of BDDs, ZBDDs



What is a BDD ?
■ Compact representation for 

Boolean function

a

b
c

0 1

0 1



What is implicit logic minimization?
■ Classic Quine-McCluskey:

■ Scherzo [Coudert] (implicit logic minimization):

Prime implicants 
M

in
te

rm
s 💣 

Minterms
ZBDD

Primes
ZBDD

τ(      ,     
)



IMPYMIN Overview: 
Implicit Hazard-free 2-Level Minimizer

f, T

Scherzo’s
Implicit 
Solver

Req-
cubes
(f,T)

ZBDD

f

    BDD   

g

BDD

Prim

e(g)
ZBDD

DHF-
Prim
e(f)

ZBDD

objects-to-be-covered

covering
objects



Impymin vs. HFMIN: Results

39

23

0

9

0

#z

added variables



IMPYMIN: Conclusions

■ New idea: incorporate hazard-freedom constraints

– transformed asynchronous problem into 
synchronous problem

■ Presented implicit minimizer IMPYMIN:

–  significantly outperforms existing minimizers

■ Idea may be applicable to other problems, e.g. testing


