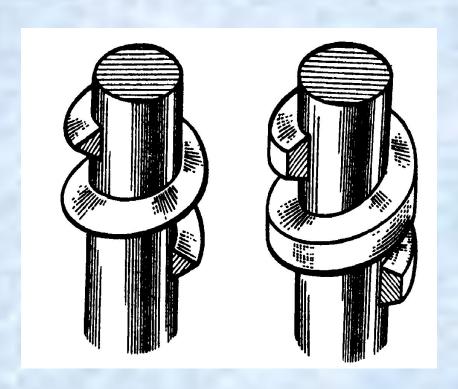
Тема № 19 «Соединения» Лекция № 40

Учебные вопросы:

- 19.5. Резьбовые соединения: назначение, классификация, основные параметры.
- 19.6. Теория винтовой пары (силовые соотношения, условия самоторможения, КПД).
- 19.7. Расчет резьбы и болтов на прочность.
- 19.8. Особенности конструкции и расчета клеевых, паянных и клеммовых соединений (изучается самостоятельно).

Литература

а) по резьбовым соединениям

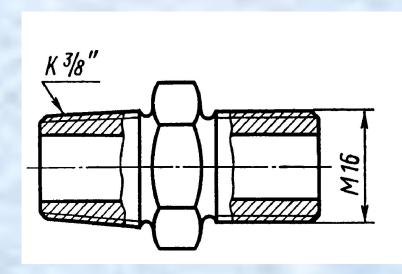

Иванов М.Н. Детали машин. М: Высшая школа, 2000, стр. 21...35

б) по клеевым, паянным и клеммовым соединениям

Иванов М.Н. Детали машин. М: Высшая школа, 2000, стр. 78…87

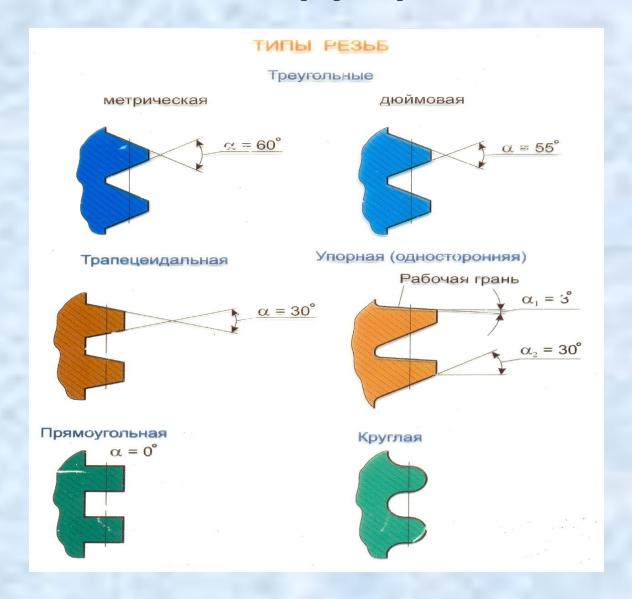
19.5 Резьбовые соединения

<u>Резьба</u> – выступы, образованные на основной (рабочей) поверхности болтов, гаек или соединяемых деталей и расположенные по винтовой линии.



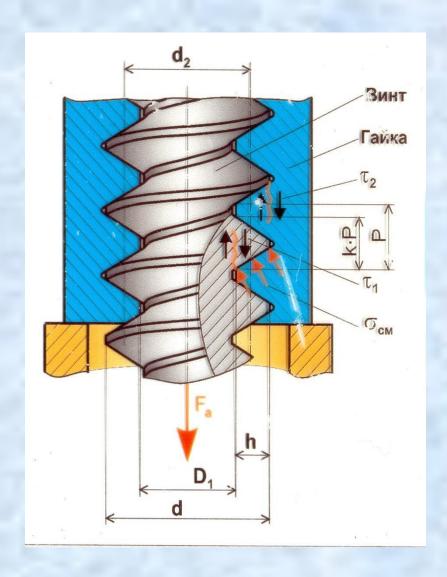
Назначение

Резьбовые соединения предназначены для разъемного соединения деталей. Пара винт — гайка применяется также как механическая передача, преобразующая вращательное движение в поступательное.


Классификация резьб

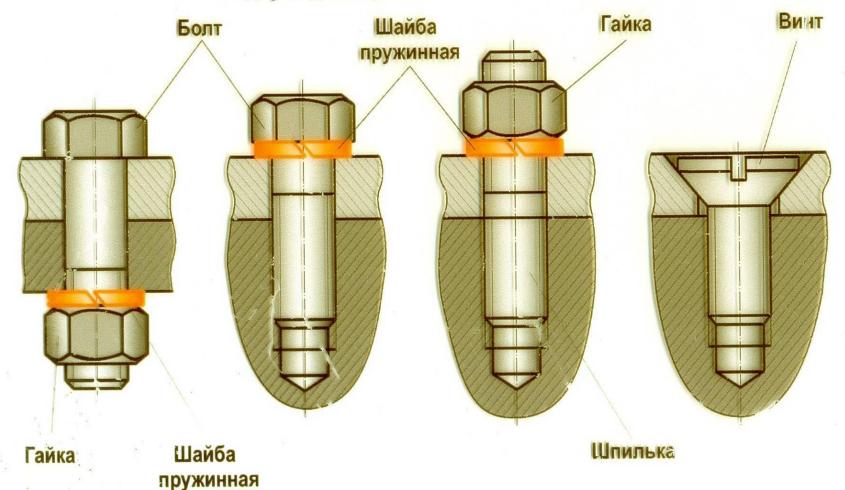
- 1. По форме основной поверхности
 - Цилиндрические
 - Конические

- 2. По направлению винтовой линии
 - Правая
 - Левая

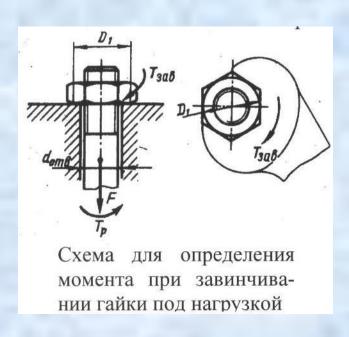

3. По профилю резьбы

4. По назначению

Основные параметры резьбы


d (D) – наружный диаметр болта (внутренний диаметр гайки); $d_{1}(D_{1})$ – внутренний диаметр резьбы (диаметр отверстия в гайке); $d_{2}(D_{2})$ – средний диаметр резьбы (средний диаметр гайки); р – шаг резьбы; h – рабочая высота профиля; $p_1 - xoд;$ n — число заходов; $p_1 = np$.

Ψ – угол подъема винтовой линии


ОСНОВНЫЕ ТИПЫ РЕЗЬБОВЫХ СОЕДИНЕНИЙ

Крепление деталей болтом и гайкой Крепление деталей ввинчиванием болта в одну из деталей **Крепление деталей** шпилькой и гайкой

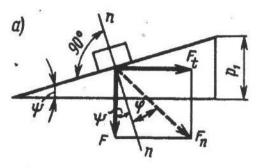
Крепление деталей винтом

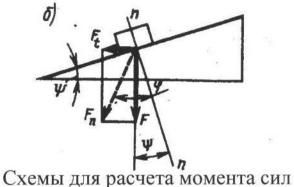
19.6. ТЕОРИЯ ВИНТОВОЙ ПАРЫ

$$T_{\text{\tiny T}} = F_a \cdot f_{\text{\tiny T}} \frac{D_{\text{cp}}}{2}$$

Момент завинчивания

Для завинчивания гайки при наличии осевой силы F к ней необходимо приложить момент завинчивание


$$T_{\text{3aB}} = T_{\text{T}} + T_{\text{p}}$$


где $T_{\text{т}}$ – момент сил трения на торце гайки;

T_p — момент в резьбе, обеспечивающий преодоления сил трения и создание осевой силы F.

$$D_{\rm cp} = \frac{D_{1+d_{\rm otb}}}{2}$$

где $f_{\text{т}}$ - коэффициент трения на торце гайки: D_1 - диаметр торца гайки: $d_{\text{отв}}$ - диаметр отверстия в гайке.

трения в резьбе:

а – при завинчивании гайки;

б – при отвинчивании гайки

$$T_{\rm p} = F_{\tau} \, \frac{d_2}{2}$$

$$F_{\tau} = F \cdot tg(\Psi + \varphi)$$

$$T_{\rm p} = F \cdot tg(\Psi + \varphi) \cdot \frac{d}{2}$$

где $\varphi = arctgf_{\pi p}$ - угол трения в резьбе; $f_{\pi p}$ - приведенный коэффициент трения в резьбе.

$$T_{\text{\tiny SAB}} = F \frac{d_2}{2} \left[\frac{D_{\text{cp}} f_{\text{\tiny T}}}{d_2} + tg(\psi + \varphi) \right]$$

Расчёты показывают, что

$$T_{\text{\tiny T}} \approx T_{\text{\tiny p}}$$

Условия самоторможения

$$T_{\text{OTB}} = F \frac{d_2}{2} \left[\frac{D_{\text{cp}} f_{\text{T}}}{d_2} + tg(\varphi - \psi) \right] \ge 0$$

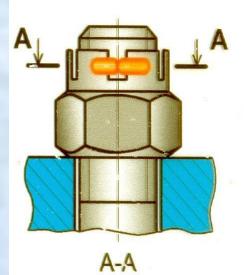
Упрощённое условия самоторможения

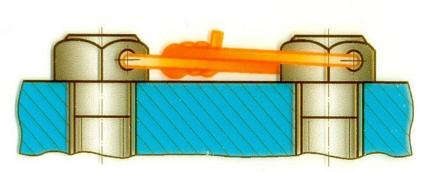
$$\psi < \varphi$$

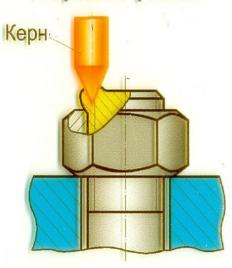
Для крепёжных резьб

$$\psi = 2^{0}30' \dots 3^{0}30''$$

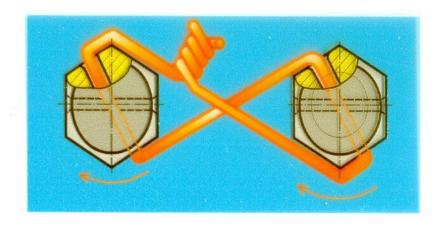
$$\varphi = 6^{0} \dots 16^{0} (f_{np} = 0.1 \dots 0.3)$$

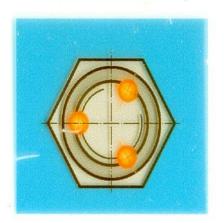

При вибрациях и переменных нагрузках коэффициент трения существенно снижается $(f_{\rm пp} \approx 0.02)$, происходит самопроизвольное отвинчивание

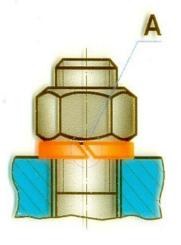

СПОСОБЫ СТОПОРЕНИЯ РЕЗЬБОВЫХ СОЕДИНЕНИЙ ЗАПИРАЮЩИМИ ЭЛЕМЕНТАМИ

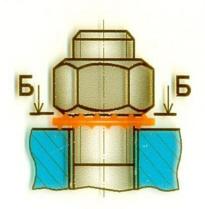

Шплинтом

Обвязкой проволокой


Кернение резьбы

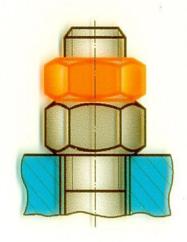


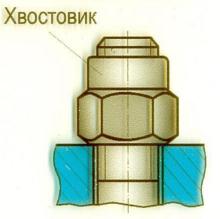




СПОСОБЫ СТОПОРЕНИЯ РЕЗЬБОВЫХ СОЕДИНЕНИЙ, ОСНОВАННЫЕ НА ДОПОЛНИТЕЛЬНОМ ТРЕНИИ

Пружинной шайбой


Осесимметричной пружинной шайбой


Б-Б

Контргайкой

Овальным обжатием цилиндрического хво стовика гайки

Болт условно не показан

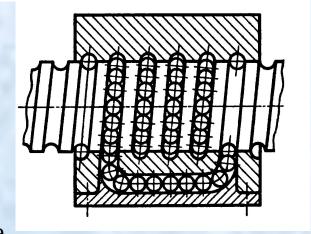
Форма хвостовика до завинчивания

A

КПД винтовой пары

$$\eta = \frac{A_{\text{пол}}}{A_{\text{затр}}}$$

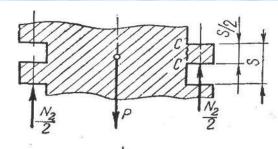
За один оборот гайки:

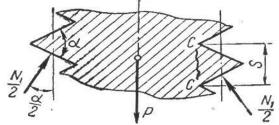

$$A_{\text{пол}} = F \cdot p = F\pi d_2 t g(\psi)$$

$$A_{\text{затр}} = F_{\tau} \cdot \pi d_2 = F \cdot tg(\psi + \varphi)\pi d_2$$

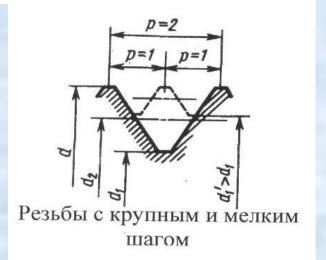
$$\eta = \frac{tg(\psi)}{tg(\psi + \varphi)}$$

Для повышения КПД:


- увеличивают ψ (многозаходные резьбы)
- уменьшают ϕ (прямоугольные или упорные резьбы, смазка трущихся поверхностей, применение шариковых винтовых пар)



РАСПРЕДЕЛЕНИЕ НАГРУЗКИ ПО ВИТКАМ РЕЗЬБЫ ПО Н. Е. ЖУКОВСКОМУ Гайка Винт Номера витков Доля осевой нагрузки на виток F,


Неравномерность распределения нагрузки по виткам обусловлено тем, что болт растягивается, а гайка сжимается.

Сравнительная характеристика резьб

К сравнению прямоугольной и треугольной резьбы по трению и прочности

$$F_{\rm Tp} = F_n \cdot f$$

Для прямоугольной резьбы:

$$F_n = P$$
 $F_{\text{Tp}} = P \cdot f$

Для треугольной резьбы:

$$F_n = \frac{P}{\cos^{\alpha}/2}$$
 $F_{\text{Tp}} = \frac{P}{\cos^{\alpha}/2} \cdot f = P f_{\text{np}}$

$$f_{\rm np} = \frac{f}{\cos^{\alpha}/2}$$

Срез витков происходит по сечению **С-С.** Для треугольной резьбы площадь среза больше, такая резьба более прочная.

Для резьбы с мелким шагом меньше угол ψ (лучше самоторможение) и больше d_1 (болт более прочный)

19.7. Расчёт резьбы и болтов на прочность

КРИТЕРИИ РАБОТОСПОСОБНОСТИ РЕЗЬБОВЫХ ДЕТАЛЕЙ BAHT Срез витка гайки Гайка Срез витка BUUTO Смятие Разрыв стержня Критерии работоспособирсти Назначение резьбы Крепежные Срез витков резьбы Разрыв стержия Ходовые и грузовые износ резьбы винты

Расчёт резьбы

Условия прочности среза витков болта:

$$\tau = \frac{F}{S_{\rm cp}} = \frac{F}{\pi d_1 pz k_n \cdot k_{\rm Hep}} \le [\tau]$$

Условия прочности среза витков гайки:

$$\tau = \frac{F}{S_{\rm cp}} = \frac{F}{\pi dpz k_n \cdot k_{\rm Hep}} \le [\tau]$$

где

p - шаг резьбы;

Z - число витков в гайке;

 k_{--} - коэффициент полноты профиля;

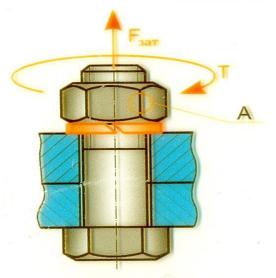
 $k_{\text{нер}}$ - коэффициент учитывающий неравномерность

нагрузки на витках

 $(k_{\text{Hep}} = 0.6 \dots 0.7)$

Условия износостойкости ходовых резьб:

$$\sigma_{\scriptscriptstyle{\text{CM}}} = \frac{F}{S_{\scriptscriptstyle{\text{CM}}}} = \frac{F}{\pi d_2 hz} \le [\sigma_{\scriptscriptstyle{\text{CM}}}]$$


где h – рабочая высота профиля.

Резьба	k n
Прямоугольная	0,5
Трапецеидальная	0,65
Упорная	0,75
Треугольная	0,87

Расчёт болтов

ЗАТЯНУТОЕ БОЛТОВОЕ СОЕДИНЕНИЕ

А (Увеличено)

При затяжке соединения болт испытывает сложное напряженное состояние - растяжение с кручением.

Эквивалентные напряжения

$$\sigma_{\rm p} = \sqrt{\sigma_{\rm p}^2 + 3\tau_{\rm k}^2} \leq [\sigma]_{\rm p}.$$

Напряжения растяжения от силы затяжки

$$\sigma_p = 4F_{\text{sat}}/(\pi \cdot d_1^2)$$
.

Напряжения кручения при затяжке соединения моментом

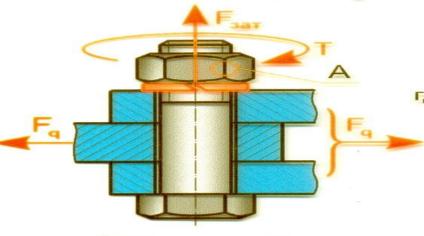
$$au_{\mathbf{k}} = \mathbf{T}/\mathbf{W}_{\mathbf{p}},$$

где $\mathbf{T} = 0.5\,\mathbf{F}_{\mathbf{3at}}\cdot\mathbf{d}_{\mathbf{2}}\cdot\mathbf{tg}(\mathbf{\psi}+\mathbf{p}^*)$
 $\mathbf{W}_{\mathbf{p}} = \pi\cdot\mathbf{d}_{\mathbf{1}}^3/\mathbf{16};$

угол подъема витка винтовой линии резьбы;
 р' - приведенный угол трения в резьбе.

Для геометрически подобных резьб

$$\sigma_{\mathbf{a}} = \beta \cdot \sigma_{\mathbf{p}}$$


где β = 1,25...1,35 - коэффициент, учитыаюш й скручивание болта при затяжке.

$$\sigma_{\scriptscriptstyle \rm SKB} = 1.3 \frac{F_{\scriptscriptstyle \rm SAT}}{\frac{\pi d_1^2}{4}} \leq [\sigma]$$

$$d_1 = \sqrt{1,3 \frac{4F_{3aT}}{\pi[\sigma]}}$$

БОЛТОВОЕ СОЕДИНЕНИЕ, НАГРУЖЕННОЕ ПОПЕРЕЧНОЙ СИЛОЙ

Болт установлен с зазором

А (Увеличено)

Потребная сила затяжки болта

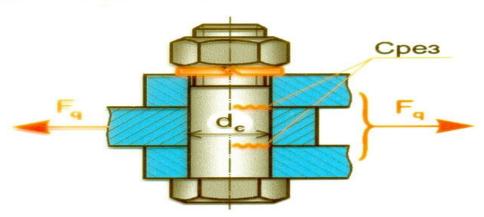
$$F_{\text{sat}} = k \cdot F_{q} / f \cdot i$$
,

где k = 1,5...2,0 - запас сцепления; f - коэффициент трения в стыке; i = 2-число стыков в соединении.

Dinamannii mianaan Kansa

Внутренний диаметр болта

из расчета на растяжение с учетом скручивания при затяжке


$$d_1 \ge \sqrt{4\beta \cdot \mathbb{F}_{\text{3aT}}/(\pi \cdot [\sigma]_p)}$$
,

где β = 1,25...1,35 - коэффициент, учитывающий скручивание болта при затяжке.

Болт установлен без зазора

Диаметр стержня болта из расчета на срез

$$d_c \ge \sqrt{4F_q/(\pi \cdot [\tau]_c \cdot i)}$$

