e Definitions and examples

e Paths and cycles



Definitions and examples

Although generally regarded
as one of the more modern
branches of mathematics,
graph theory actually dates
back to 1736.

In that year Leonhard Euler
published the first paper on
what is now called graph
theory. In the paper, Euler
developed a theory which
solved the so-called
Konigsberg Bridge problem.




Definitions and examples

Euler (1707 — 1783) was born
in Switzerland and spent
most of his long life in Russia
(St Petersburg) and Prussia
(Berlin).

He was the most prolific
mathematician of all time,
his collected works filling
more than 70 volumes.




Definitions and examples

Like many of the very great
mathematicians of his era,
Euler contributed to almost
every branch of pure and
applied mathematics.

He is also responsible, more
than any other person, for
much of the mathematical
notation in use today.




Definitions and examples

* What is a ‘graph’? Intuitively, a graph is simply a
collection of points, called ‘vertices’, and a collection
of lines, called ‘edges’, each of which joins either a
pair of points or a single point to itself.

* A familiar example, which serves as a useful analogy,
is @ road map which shows towns as vertices and the
roads joining them as edges.



Befinition 1

An undirected graph comprises:

 a finite non-empty set V of vertices,
 afinite set E of edges, and

* afunction 6 : £—> P(V) such that, for every edge e,
d(e) is a one- or two-element subset of V.

The edge e is said to join the element(s) of 6 (e).

An undirected graph is simple if there are no loops and
multiple edges.



@onsider, for example, the
graph I' represented in the
figure. Clearly I' has vertex
set {vy,v,,v3,v,} and
edges set {e4, €5, €3, €4, es}.
The function 6 : E->P (V) is
defined by

§:e; — {v}

$ €y {Ul, 772}

L €3 {Ul, 123}

c ey — {1y, v3)

S O O O

. €5 {VZJ v3}-



Definitions and examples

We should emphasize that a
graph and a diagram
representing it are not the
same thing.

A given graph may be
represented by two diagrams
which appear very different.

For instance, the two diagrams
in the figure represent the
same graph as can be observed
by writing down the function

§: E—PW)




Pefinition 2
* A pair of vertices v and w are adjacent if there
exists an edge joining them. In this case we say

both v and w are incident to e and also that e is
incident to v and to w.

* The edges {eq, e, ..., €,,} are adjacent if they have
at least one vertex in common.



Definitions and examples

Pefinition 2

 The degree or valency, deg(v), of a vertex v is the
number of edges which are incident to v. (Unless
stated otherwise, a loop joining v to itself counts
two towards the degree of v.)

* A graphin which every vertex has the same
degree 7 is called regular (with degree r) or
simply r-regular.



Definition 2

* The degree sequence of a graph is the sequence
of its vertex degrees arranged in non-decreasing
order.



* The vertices v, and v,
are adjacent, because
the edge e, joins them.

* Similarly v; and v; are
adjacent, as are v, and
V3.

* The vertex v, is

adjacent to no other
vertex.



« Edges eq, e, and e; are
adjacent, since they all
meet at vertex v;.

* Similarly e,, e,, eg are
adjacent, as are e3, ey,
€s.



The degrees of the four
vertices are given in the
following table.




Phe degree sequence of
the graph is (0, 3, 3, 4).




Definitions and examples

* A well known 3-regular simple
graph is Peterson’s graph. Two
diagrams representing this
graph are given in the figure.

* In drawing diagrams of graphs
we only allow edges to meet
at vertices. It is not always
possible to draw diagrams in
the plane satisfying this
property, so we may need to
indicate that one edge passes
underneath another as we
have done in the figure.




Definitions and examples

Refinition 3

* A null graph (or totally disconnected graph) is one
whose edge set is empty. (Pictorially, a null graph is
just a collection of points.)

* A complete graph is a simple graph in which every
pair of distinct vertices is joined by an edge.

* A bipartite graph is a graph where the vertex set has
a partition {I/;,V, } such that every edge joins a
vertex of V; to a vertex of V/,.

A complete bipartite graph is a bipartite graph such
that every vertex of I/; is joined to every vertex of I/,
by a unique edge.



Example 1

e Since a complete graph is simple there are no loops
and each pair of distinct vertices is joined by a

unique edge. Clearly a complete graph is uniquely
specified by the number of its vertices.



xample 1

* The complete graph K,, with n vertices can be
described as follows.

It has vertex set V = {v4, v,, ..., v, } and edge set
E = {eij: 1<i<j< n} with the function § given
by 8(ey;) = {vi, v}

* The graph K,, is clearly regular with degreen — 1,

since every vertex is connected, by a unique edge, to
each of the other n — 1 vertices.



Example 1
 The complete graphs with three, four and five
vertices are illustrated in the figure.




Definitions and examples

fexample 2

 LetI be a bipartite graph where the vertex set IV has
the partition {V,V, }.

Note that I' need not be simple. All that is required is
that each edge must join a vertex of V; to a vertex of
V5. Given v; € V; and v, € V,, there may be more

than one edge joining them or no edge joining them.

Clearly, though, there are no loops in .



xample 2

* A complete bipartite graph is completely specified by
|Vi| and |V, |. The complete bipartite graph on n
and m vertices, denoted K,, ,,,, has |V;| = n and
|V,| = m. It is necessarily simple.



fexample 2

* The figure shows two bipartite graphs. In each case
the vertices of I/; are indicated by full circles and the
vertices of I/, by crosses. The graph in (b) is the
complete bipartite graph, K3 3.




pPefinition 4

Let " be a graph with vertex set {v,, v,, ..., v, }. The
adjacency matrix of ' is the n X n matrix A = A(T")
such that a;; is the number of distinct edges joining v;

and v;.



Definitions and examples

* The adjacency matrix is necessarily symmetric as the
number of edges joining v; and v; is the same as the
number joining v; and v;.

* The degree of vertex v; is easily determined from the
adjacency matrix.

* |f there are no loops at v; then its degree is the sum
of the entries in the ith column (or ith row) of the
matrix.

* Since every loop counts twice in the degree, when
summing the entries in the ith column (or ith row)
the diagonal element a;; must be doubled to obtain
the degree of v;.



Fhe following is the
adjacency matrix A of the
graph represented in the
figure

1110
11020
A= 1200
0000




. 1110
11020
A= 1200
0000

Note that

V= {vl' Vo, V3, 124}
and the rows and columns

of A refer to the vertices
in the order listed.



Two properties of the
graph are immediately
apparent from the matrix.

Firstly, by considering the
leading diagonal we note
that there is only one loop
—from v, to itself.



Secondly, the last row (or
column) of zeros indicates
that v, is an isolated
vertex connected to no
vertices at all (including
itself).



The degrees of the vertices
are easily calculated from the
matrix as follows:

deg(v;)=2X1+14+1=4
deg(v,)=1+2 =3
deg(v3)=1+2=3
deg(v,) = 0.



xample 3

The null graph with n vertices has the n X n zero matrix
0,,«n, as its adjacency matrix, since there are no edges

whatsoever.



Example 4

A complete graph has adjacency matrix with zeros
along the leading diagonal (since there are no loops)
and ones everywhere else (since every vertex is joined

to every other by a unique edge).



Definitions and examples

Befinition 5

A graph X is a subgraph of the graph I', denoted X < T,
if V'ss € Vi, Es € Er and 8z (e) = dp(e), for every edge
e of X.

The condition that 6x(e) = ér(e), for every edge e of
2., just means that the edges of the subgraph X must
join the same vertices as they do in I'. Intuitively, 2 is a
subgraph of I' if we can obtain a diagram for X by
erasing some of the vertices and/or edges from a
diagram of I'. Of course, if we erase a vertex we must
also erase all edges incident to it.



xample 5
We can regard X as a subgraph of I'.




* Using the analogy of a road map, we can consider
various types of ‘journeys’ in a graph.

* For instance, if the graph actually represents a
network of roads connecting various towns, one
guestion we might ask is: is there a journey,
beginning and ending at the same town, which visits
every other town just once without traversing the
same road more than once?

e As usual, we begin with some definitions.



Refinition 6

* An edge sequence of lengthninagraph T isa
sequence of (not necessarily distinct) edges
e4, e, ..., ey such that e; and e;, ; are adjacent for
i =1,2,..,n— 1. The edge sequence determines a
sequence of vertices (again, not necessarily distinct)
Vo, V1, Vg, «uv, Up—1, U, Where 6(e;)= {v;_1,v;}. We
say v, is the initial vertex and v,, the final vertex of
the edge sequence.



Refinition 6

* A path is an edge sequence in which all the edges are
distinct. If in addition all the vertices are distinct
(except possibly vy = v,,) the path is called simple.



Refinition 6

* An edge sequence is closed if vy = v,. A closed
simple path containing at least one edge is called a
cycle or a circuit.



An edge sequence is any finite sequence of edges
which can be traced on the diagram of the graph
without removing pen from paper. It may repeat edges,
go round loops several times, etc.



Edge sequences are too general to be of very much use
which is why we have defined paths.



In a path we are not allowed to ‘travel along’ the same
edge more than once.



If, in addition, we do not ‘visit’ the same vertex more
than once (which rules out loops), then the path is
simple.



The edge sequence or path is closed if we begin and
end the ‘journey’ at the same place.



et I' be the graph
represented in the figure;
examples of edge
sequences in I" are:

1) eq, €3, €4, €5, €3;
2) e3, e3;

3) ey, €3, €4;
4) ey, e3;
5) ey, €5, e;.



1) eq, e3,€4,6c, €5

Sequence 1) is a closed
edge sequence beginning
and ending at vy: it
determines the vertex
sequence vy, V4, V3, Uy,
V3, V1.

This edge sequence is not
a path because the edge
e5 is traversed twice.



2) €3, €3

Sequence 2) is also
closed, but it is ambiguous
whether it begins (and
ends) at v; or v3. The
vertex sequence could be
either v¢, v3, V1 Or V3, V4,
V3.

This ambiguity will always
occur in an edge sequence
of the form ¢;, e;, ..., €;
where e; is not a loop.

Again, it is not a path.



3) €2, €3, €4

Sequence 3) is a cycle: it
begins and ends at v, and
no edge or vertex (except
v, itself) is repeated.



% 4') €4, €3
Vs = Sequence 4) is a simple

path from v, to v;.




5) ey, €5, €

Sequence 5) is a path with
initial and final vertices
v,, U1 respectively.

It is not a simple path
because vertex v, appears
twice in the associated
vertex sequence.



In an intuitively obvious sense, some graphs are ‘all in
one piece’ and others are made up of several pieces.

We can use paths to make this idea more precise.



Definition 7

A graph is connected if, given any pair of distinct
vertices, there exists a path connecting them.



An arbitrary graph naturally splits up into a number of
connected subgraphs, called its (connected)
components.

The components can be defined formally as maximal
connected subgraphs.



Bhis means that I’} is a component of ' if it is a
connected subgraph of I' and it is not itself a proper
subgraph of any other connected subgraph of I'.

This second condition is what we mean by the term
maximal; it says that if 2 is a connected subgraph such
that [; < X, then ¥ = I3 so there is no connected
subgraph of I' which is ‘bigger’ than I7.



The components of a graph are just its connected
‘pieces’.

In particular, a connected graph has only one
component.

Decomposing a graph into its components can be very
useful.

It is usually simpler to prove results about connected
graphs and properties of arbitrary graphs can
frequently then be deduced by considering each
component in turn.



Example 6

The graph illustrated in the
figure has two
components, one of which
is the null graph with
vertex set {v,}.



Example 7

Frequently it is clear from a diagram of I' how many

components it has. Sometimes, however, we need to
examine the diagram more closely. For instance, both
graphs illustrated in the figure have two components,
although this is not instantly apparent for the graph (b).

A

(a) (b)




