Mechanical Design I

Materials and Processes

SEDS, Department of Robotics and Mechatronics, ROBT 301, Fall 2020

General Properties of Metals

SEDS, Department of Robotics and Mechatronics, ROBT 301, Fall 2020

Outline

- General Properties of Metals
- Cast irons
- Cast steels
- Wrought steels
- Steel numbering system
- Steel alloys
- Aluminum alloys
- Other alloys

- Nonmetals general properties
- Materials Selection
- Product Analysis
- Case Study
- Materials Selection Charts
- Bigger Picture
- Case Study (2)

Learning Outcome

- Purpose : Material selection
- Resources:
 - Appendix A: Mechanical property data
 - Figure 2-17 : Young's module
 - Material manufacturers handbook

FIGURE 2-17

Young's Moduli for Various Metals Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Cast irons

- Advantages: relatively low cost and ease of fabrication
- Density is slight higher than steel
- Week in tension, high compressive strength
- Carbon content 2-4.5% Not easily welded

White cast iron

• With no graphite.

Gray cast iron

• Most commonly used form of cast iron. (Graphite: helps machining and casting)

Cast steels

- Has much less carbon than cast iron
- Mechanical properties superior to cast iron but inferior to wrought steel
- Classes
 - Low carbon: <0.2%
 - Medium carbon: 0.2-0.5%
 - High carbon: >0.5%

Wrought steels

- "Wrought" refers to all processes that manipulate the shape of the material **without melting it**.
 - Hot-rolled steel
 - Change the shape at elevated temperature, rough surface
 - Good choice for steel members used for building and machine frame construction
 - Cold-rolled steel
 - Changing shape at room temperature
 - Very good polished surface
 - Sheets, strips, plates, round and rectangular bars, tubes, etc.

General Properties of Metals

Steel numbering system

Table 2-5 AISI/SAE Designations of Steel Alloys A partial list - other alloys are available - consult the manufacturers				
Туре	AISI/SAE Series	Principal Alloying Elements		
Carbon Steels				
Plain	10xx	Carbon		
Free-cutting	11xx	Carbon plus Sulphur (resulphurized)		
Alloy Steels				
Manganese	13xx	1.75% Manganese		
	15xx	1.00 to 1.65% Manganese		
Nickel	23xx	3.50% Nickel		
	25xx	5.00% Nickel		
Nickel-Chrome	31xx	1.25% Nickel and 0.65 or 0.80% Chromium		
	33xx	3.50% Nickel and 1.55% Chromium		
Molybdenum	40xx	0.25% Molybdenum		
	44xx	0.40 or 0.52% Molybdenum		
Chrome-Moly	41xx	0.95% Chromium and 0.20% Molybdenum		
Nickel-Chrome-Moly	43xx	1.82% Nickel, 0.50 or 0.80% Chromium, and 0.25% Molybdenum		
	47xx	1.45% Nickel, 0.45% Chromium, and 0.20 or 0.35% Molybdenum		
Nickel-Moly	46xx	0.82 or 1.82% Nickel and 0.25% Molybdenum		
	48xx	3.50% Nickel and 0.25% Molybdenum		
Chrome	50xx	0.27 to 0.65% Chromium		
	51xx	0.80 to 1.05% Chromium		
	52xx	1.45% Chromium		
Chrome-Vanadium	61xx	0.60 to 0.95% Chromium and 0.10 to 0.15% Vanadium minimum		

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

SEDS, Department of Robotics and Mechatronics, ROBT 301, Fall 2020

Steel alloys

400

300

Steel alloys

FIGURE 2-18

Approximate Ultimate Tensile Strengths of Some Normalized Steels

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

o, Stress, MPa ن ^{isy} 200 ئ 1500 1000 AISI 1095, hot rolled 100 500 AISI 1020, hot rolled 0 0.2 0.3 0.4 0 0.1 ε, Strain FIGURE 2-19

AISI 4142, as quenched

Tensile Test Stress-Strain Curves of Three Steel Alloys (From Fig. 5.16, p. 160, in N. E. Dowling, *Mechanical Behavior of Materials*, Prentice-Hall, Englewood Cliffs, N.J., 1993, with permission)

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Week 3

SEDS, Department of Robotics and Mechatronics, ROBT 301, Fall 2020

2500

2000

Aluminum alloys

- Aluminum is the most widely used nonferrous metal.
- Low density, good strength-to-weight ratio, ductility, high conductivity, corrosion resistance and reasonable price are its main properties.
- Alloys have significantly greater strength, and extensively used in aircraft and automotive industries.

Aluminum alloys

Table 2-6	Aluminum Association Designations of Aluminum Alloys
	A partial list - other alloys are available - consult the manufacturers

Series	Major Alloying Elements	Secondary Alloys	
1xxx	Commercially pure (99%)	None	
2xxx	Copper (Cu)	Mg, Mn, Si	
Зххх	Manganese (Mn)	Mg, Cu	
4xxx	Silicon (Si)	None	
5xxx	Magnesium (Mg)	Mn, Cr	
бххх	Magnesium and Silicon	Cu, Mn	
7xxx	Zinc (Zn)	Mg, Cu, Cr	
Hardness Designation	S		
xxxx-F	As fabricated		
xxxx-O	Annealed		
хххх-Нууу	Work hardened		
хххх-Тууу	Thermal/age hardened		

SEDS, Department of Robotics and Mechatronics, ROBT 301, Fall 2020

Other alloys

- Titanium alloys are among the newest of engineering materials.
- Magnesium alloys are lightest of the commercial metals but is relatively weak.
- Pure copper is soft, weak and malleable and is used primarily for piping, flashing, electrical conductors and motors.

Nonmetals general properties

- Polymers
 - Thermoplastic and thermosets
- Ceramics
 - Compounds of metallic and non-metallic elements.
- Composites
 - Combination of strong, fibrous material such as glass or carbon fibers glued in a matrix of resin such as epoxy or polyester.

Week 3

Materials Selection: Decisions, decisions!

So many materials, so much information.

How do we decide? How do we begin to choose?

First we need to look at the function of the product – product

analysis

SEDS, Department of Robotics and Mechatronics, ROBT 301, Fall 2020

Product Analysis

- Just what it says analyse the product!
- What does it do?
- How does it do it?
- Where does it do it?
- Who uses it?
- What should it cost?

Case Study – a bike

- What is the function of a bike obvious?
- How does the function depend on the type of bike?
 - Racing
 - Touring
 - Mountain bike
 - Commuter
 - Childs

Bike Frame

SEDS, Department of Robotics and Mechatronics, ROBT 301, Fall 2020

Frame Design Detail

SEDS, Department of Robotics and Mechatronics, ROBT 301, Fall 2020

Case Study – a bike

- How is it made to be easily maintained?
- What should it look like (colours etc.)?
- What should it cost?
- How has it been made comfortable to ride?
- How do the mechanical parts work and interact?

System Analysis – the bike

When we analyse a system we need to break the system down into individual components and then analyse each one.

The bike breaks down into various parts:

- Frame
- Forks
- Wheels
- Saddle
- Etc.

System Analysis – the bike

We now need to look at the following for each part:

- Requirements (mechanical, ergonomic, aesthetic etc.)
- Function
- How many are going to be made?
- What manufacturing methods are we going to use?

Manufacturing

Oh No!

We have to actually make it!

This is a key question which has a massive influence on materials selection.

e.g. The frame, what materials could we use?

Frame Materials

• Steel –

Strong, stiff, heavy, but cheap

• Aluminium –

weaker, lighter, more expensive than steel

• Composite-

strong, stiff, very light, but expensive to buy and to fabricate

SEDS, Department of Robotics and Mechatronics, ROBT 301, Fall 2020

What Properties?

- Mechanical Strength, modulus etc.
- Physical –
 Density, melting point.
- Electrical Conductivity, resistivity.
- Aesthetic
 - Appearance, texture, colour
- Process ability –
 Ductility, mould ability
- And last, but not least.....important. Cost, cost, cost!

Where do I find the data?

- Textbooks
- Databooks
- Manufacturer's literature
- Internet Sites

Textbooks

- Good for general information.
- Some have tables of properties.
- Not good for detailed specifications and properties.
- A useful first point of call.

Databooks

- One of the quickest sources of detailed information.
- Usually contain grades and specifications as well as properties.
- Small and perfectly formed pocketbooks
- Easy to navigate around.

Manufacturer's literature

- Variable in quality and usefulness.
- Often only cover their products.
- Usually do not compare materials.
- Can be subjective.
- Good for final selection before ordering.

SEDS, Department of Robotics and Mechatronics, ROBT 301, Fall 2020

Internet Sites

- Lots of poorly presented information.
- Google searches bring up lots of rubbish.
- Hard to find technical information.
- Best to use non-commercial sites.

Materials Selection

Charts

Materials Selection Charts

FIGURE 2-23

Young's Modulus Plotted Against Density for Engineering Materials (From Fig. 4-3, p. 37 in M. F. Ashby, *Materials Selection in Mechanical Design*, 2ed, Butterworth-Heinemann 1999, with permission)

Materials Selection

Charts

Materials Selection Charts

FIGURE 2-24

Strength Plotted Against Density for Engineering Materials (From Fig. 4-4, p. 39 in M. F. Ashby, *Materials Selection in Mechanical Design*, 2ed, Butterworth-Heinemann 1999, with permission)

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

SEDS, Department of Robotics and Mechatronics, ROBT 301, Fall 2020

Modulus - Density Chart

- Modulus spans 5 orders of magnitude.
 - 0.01 GPa for foams to 1000 GPa for diamond.
- The charts therefore use *logarithmic* scales, where twice the

distance means ten times.

• This makes it possible to show the full range on one chart.

Materials Selection Charts

- Allow easy visualisation of properties.
- Show lots of different materials.
- Can be 'drilled down' to specifics.
- Show balances of properties.
- Ideal for a first 'rough cut' selection.

Bigger Picture

Is the product *performance* driven or *cost* driven? This makes a huge difference when choosing materials.

Manufacturing Process

Although we usually choose materials first sometimes it is the shape and process which is the limiting factor.

Case Study (2) Drink Container

• What are the requirements?

Case Study (2) Drink Container

- Provide leak free environment for storing liquid.
- Comply with food standards & protect liquid from health hazards.
- For fizzy drinks, withstand pressure.
- Brand image & identity
- Easy to open
- Easy to store & transport
- Cheap for high volumes

Possible Materials

- Steel
- Aluminium
- Glass
- Plastic
- Paper

SEDS, Department of Robotics and Mechatronics, ROBT 301, Fall 2020

