

Лекция №4 по курсу «Методы и средства передачи информации ч.1»

Лектор: д.т.н., Оцоков Шамиль Алиевич,

email: otsokovShA@mpei.ru

Код с повторением

Код с повторением

$$A_0, A_1, A_2, ..., A_{n-1}$$

Кодируется

$$A_0, A_1, A_2, ..., A_{n-1} ... A_0, A_1, A_2, ..., A_{n-1} ...$$

1010 -> 101010101010

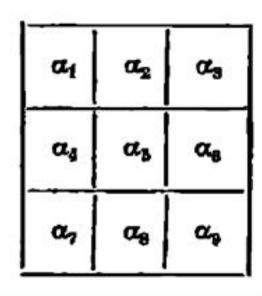
Сколько раз повторять?

Код проверки на чётность (избыточность 1 разряд)

Избыточные символы называют контрольными или проверочными.

Прямоугольный код

Рассмотрим множество всех двоичных слов длины 9 (с их помощью можно закодировать 2^9 =512 сообщений). Расположим символы каждого слова $\alpha_1\alpha_2...\alpha_9$ в квадратной таблице следующим образом:



Прямоугольный код

К каждой строке и к каждому столбцу этой таблицы добавим еще по одному (проверочному) символу с таким расчетом, чтобы в строках и столбцах получившейся таблицы (таблица 15) было четное число единиц.

При этом, например, для первой строки и первого столбца будут выполняться проверочные соотношения:

$$\beta_1 = \alpha_1 + \alpha_2 + \alpha_3 \pmod{2}$$
, $\beta_4 = \alpha_1 + \alpha_4 + \alpha_4 \pmod{2}$

и аналогично для остальных строк и столбцов. Заметим, что $\beta_1 + \beta_2 + \beta_3 = \beta_4 + \beta_5 + \beta_6$ (mod 2).

Обе эти суммы равны 0, если в слове а,а,...а, четное число единиц, в противном случае обе они равны 1. Это дает воз-

αι	a_2	a ₃	βι
α,	a _s	α ₆	β2
a,	a ₈	a	βa
β4	βδ	βε	β,

Прямоугольный код

$$\beta_7 = \beta_1 + \beta_2 + \beta_3 = \beta_4 + \beta_5 + \beta_6 \pmod{2}$$
.

Например, слову 01 1010001 отвечает следующая таблица:

Таблица 16

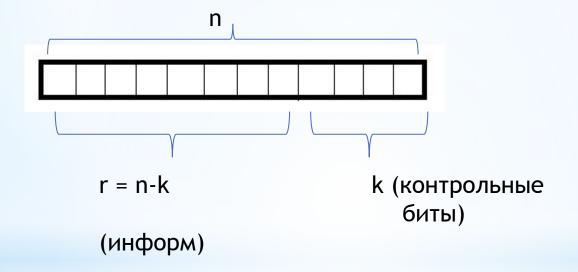
0	1	1	0
0	1	0	1
0	0	ı	1
0	0	0	0

Исправление 1 ошибки и обнаружение двух ошибок

Избыточность

Избыточность помехоустойчивого кода делится на:

- абсолютную избыточность I = (k) двоичных символов; - относительную избыточность I = (k) двоичных символов; ; I = (l/n) * 100%;



Сколько бит добавить чтобы исправлять одну ошибку г бит и k контрольных

$$2^{k} > = r + k + 1$$

Избыточность

Количество информационных	Количество контрольных		
разрядов т	разрядов <i>k</i>		
1	2		
2-4	3		
5 – 11	4		
12 — 26	5		
27 — 57	6		

Вместо х1 будем писать х₀₀₁ Вместо х2 будем писать х₀₁₀ Вместо х3 будем писать х₀₁₁ Вместо х4 будем писать х₁₀₀ Вместо х5 будем писать х₁₀₁ Вместо х6 будем писать х₁₁₀ Вместо х7 будем писать х₁₁₁

Пусть дано двоичное число (x1 x2 x3 x4) Дополним его 3-мя контрольными разрядами (x5 x6 x7) и получим число: (x1 x2 x3 x4 x5 x6 x7)

Выпишем те x , y которых единичка в крайнем правом разряде $x1 + x3 + x5 + x7 = 0 \pmod{2}$ Выпишем те x , y которых единичка посередине $x2 + x3 + x6 + x7 = 0 \pmod{2}$ Выпишем те x , y которых единичка в крайнем левом разряде $x4 + x5 + x6 + x7 = 0 \pmod{2}$

$$x1 + x3 + x5 + x7 = 0 \pmod{2}$$

 $x2 + x3 + x6 + x7 = 0 \pmod{2}$
 $x4 + x5 + x6 + x7 = 0 \pmod{2}$

001	1011001
110	0010100
000	0110011
111	1110001

Nº	x1	x2	x 3	x4	x 5	x6	x7
0	0	0	0	0	0	0	0
1	0	0	0	1	1	1	1
2	0	0	1	0	1	1	0
3	0	0	1	1	0	0	1
4	0	1	0	0	1	0	1
5	0	1	0	1	0	1	0
6	0	1	1	0	0	1	1
7	0	1	1	1	1	0	0
8	1	0	0	0	0	1	1
9	1	0	0	1	1	0	0
10	1	0	1	0	1	0	1
11	1	0	1	1	0	1	0
12	1	1	0	0	1	1	0
13	1	1	0	1	0	0	1
14	1	1	1	0	0	0	0
15	1	1	1	1	1	1	1

$$s_3 = x_1 + x_3 + x_5 + x_7 \mod 2$$

 $s_2 = x_2 + x_3 + x_6 + x_7 \mod 2$
 $s_1 = x_4 + x_5 + x_6 + x_7 \mod 2$

Номер одиночной ошибки k определяется числом c двоичной записью s_1 s_2 s_3 ? T.e. $k = (s_1 s_2 s_3)_2$ $(x_1 x_2 x_3 x_4 x_5 x_6 x_7)$ $(x_{001} x_{010} x_{011} x_{100} x_{101} x_{110} x_{111})$

Nº	x 1	x 2	x 3	x4	x5	х6	x7
0	0	0	0	0	0	0	0
1	0	0	0	1	1	1	1
2	0	0	1	0	1	1	0
3	0	0	1	1	0	0	1
4	0	1	0	0	1	0	1
5	0	1	0	1	0	1	0
6	0	1	1	0	0	1	1
7	0	1	1	1	1	0	0
8	1	0	0	0	0	1	1
9	1	0	0	1	1	0	0
10	1	0	1	0	1	0	1
11	1	0	1	1	0	1	0
12	1	1	0	0	1	1	0
13	1	1	0	1	0	0	1
14	1	1	1	0	0	0	0
15	1	1	1	1	1	1	1

Код Хэмминга (обнаружение двойной ошибки)

В общем случае кодовые слова двоичного кода Хемминга, позволяющего исправить одиночную ошибку, имеют длину 2^m—1 (m — натуральное). Для определения положения ошибки тогда уже нужно m проверок, т. е. m прове-

рочных символов. Оставшиеся 2^т—1—т символов являются информационными. Проверки строятся по аналогии с рассмотренным случаем. Значения т проверок, как и выше, образуют номер положения ошибки.

$$egin{array}{lll} & s_3 = x_1 + x_3 + x_5 + x_7 \mod 2 & & \Pi \mbox{Очему обнаруживаются} \ & s_2 = x_2 + x_3 + x_6 + x_7 \mod 2 & & \mbox{две ошибки и исправляется} \ & s_1 = x_4 + x_5 + x_6 + x_7 \mod 2 & & \mbox{одна?} \ & s_0 = (x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7) \mod 2 & & \mbox{Омему обнаруживаются} \ & \mbox{две ошибки и исправляется} \ & \mbox{одна?} \ & \m$$

2. Расположение контрольных разрядов в коде Хемминга определяется соображениями удобства построения опознавателя. Поэтому они располагаются последовательно справа налево в позициях, номера которых являются степенями двойки. Информационные разряды кода занимают оставшиеся свободные позиции. Таким образом, общая структура кода при m=4 имеет вид:

7

4=2² 3 2=2¹

1=20

a4

a3

a₂

k₃

an

k2

k₁

к₁ контролирует четность 3, 5 и 7-го разрядов кода;

контролирует четность 3, 6 и 7-го разрядов кода;

кз контролирует четность 5, 6 и 7-го разрядов кода.

Выражения для определения контрольных разрядов имеют вид:

k1 = a3 a5a7;

k2 = a3 a6a7

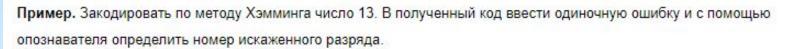
k3 = a5 a6a7;

4. В качестве опознавателя используется k-разрядное слово (r₃ r₂ r₁). Его

Разряды определяются по формулам:

r₁= k₁a₃ a₅a₇;

r₃= k₃ a₅ a₆a₇.



Решение.

1. Число 13 переводится в двоичную систему счисления: 13₁₀ = 1101₂

Число двоичных информационных разрядов m=4. Количество контрольных

разрядов k=3 (было определено ранее).

2. Для получения полной структуры кода, значения информационных

разрядов подставляются в соответствующие позиции. Общая структура кода

имеетвид: 1 1 0 k₃ 1 k₂ k₁

3. Определяются значения контрольных разрядов:

 $k_1 = a_3 a_5 a_7 = 101 = 0$;

k₂ = a₃ a₆a₇=111=1;

k3 = a5 a6a7=011=0.

Значения информационных и контрольных разрядов подставляются в структуру кода. В результате получается искомый код Хемминга.

5 4=22 3

2=21

1=20

0

0

1

0

4. Предполагаем, что в результате сбоя при передаче исказился третий разряд кода и его единичное значение изменилось на противоположное (нулевое). В результате получен код: 1 1 0 0 0 1 0.

Исходя из нового ошибочного значения кода, вычисляется значение опознавателя:

Опознаватель r₃ r₂ r₁=011₂=3₁₀, то есть ошибка произошла в третьем разряде.

Проинвертировав ошибочный разряд, получаем истинное значение кода:

1100110.

5. Построить систему проверок для кода Хемминга длины 15. Сколько кодовых слов содержит этот код? Сколько информационных и сколько проверочных символов имеется в кодовом слове?

Расстояние Хэмминга

Известно, что расстояние между точками в пространстве определяется как длина отрезка прямой, соединяющей эти точки. Оно служит мерой близости точек — чем меньше расстояние, тем ближе друг к другу расположены точки. Если обозначать расстояние между точками а и в через р (a, b), то для любых точек a, в и с имеем:

- 1) $\rho(a,b) \ge 0$;
- 2) $\rho(a,b)=0$ означает, что a=b;
- 3) $\rho(a,b) = \rho(b, a)$
- 4) $\rho(a,b) + \rho(b,c) > \rho(a,c)$.

Расстоянием $\rho(x, y)$ между двумя словами x и y назовем число несовпадающих позиций этих слов. Например, расстояние между словами x=01101 и y=00111 равно 2.

Кодовое расстояние

Кодовое расстояние d(V) определим как минимальное расстояние между различными кодовыми словами из V: $d(V) = \min_{x \neq y} \rho(x, y)$.