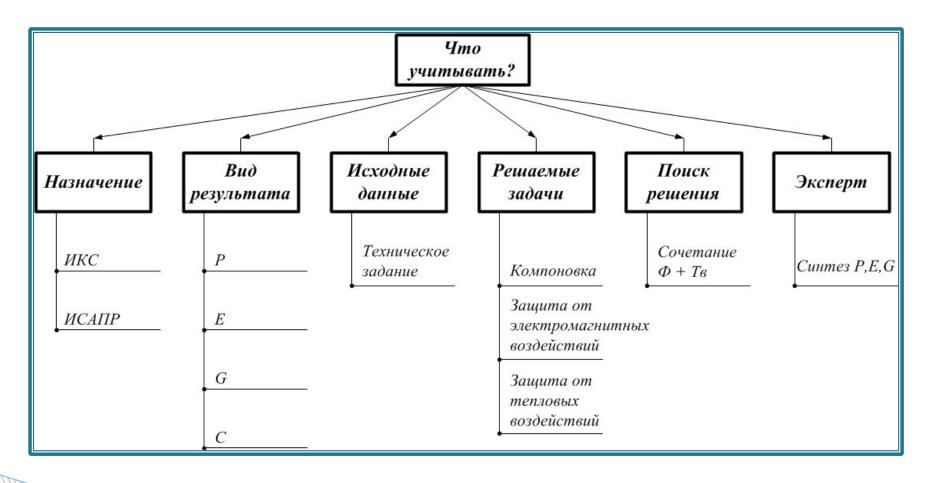
Практические занятия по курсу ИИТП

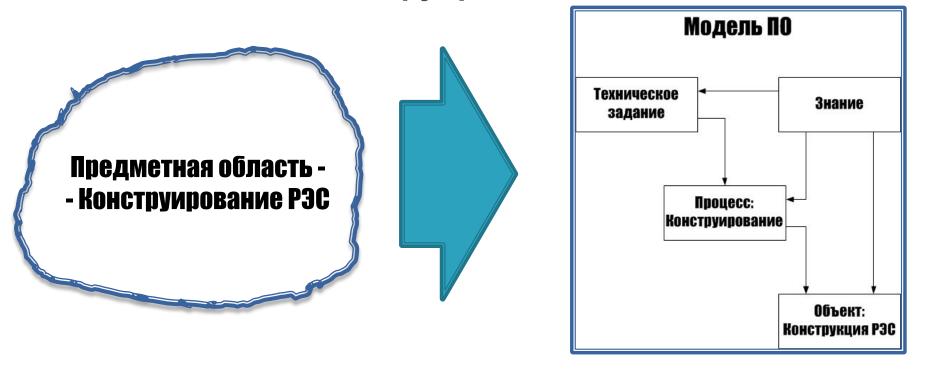
«Моделирование знаний по конструированию РЭС»

ПЗ №1. Моделирование знаний эксперта по конструированию ЭС

Рассматриваются вопросы сбора, систематизация и моделирование знаний по конструированию опытного разработчика для построения ИИС, ИКС, ИСАПР


1. Что учитывать в модели предметной области? - Идентификация ПО.

Необходимо решить какие знания эксперта должны быть учтены в модели ПО Назначение модели ПО: □ автоматизированное решение задач конструирования; □ обучение конструкторов; □ хранение знаний опытных разработчиков... Вид результата использования модели: □ разработка электрической схемы; □ построение чертежа печатной платы (ПП); □ поиск значения собственной частоты конструкции ПП... Исходные данные: □ техническое задание; □ предварительный вариант конструкции ЭС; □ сборочный чертеж печатного узла...


<u>Решаемые задачи:</u> □ по содержанию; ❖ трассировка и размещение компонентов ПП; ♦ расчёт собственной частоты ПП; ❖ расчёт температуры компонентов на ПП... □ по характеру; задачи анализа; ❖ задачи синтеза параметров; ❖ задачи синтеза структуры; ❖ принятие решение... Поиск решения: □ формальные действия (алгоритмы, программы); □ интуитивно-эвристические действия разработчика; □ сочетание и т.д. В чем необходимость эксперта: □ задачи; пействия.

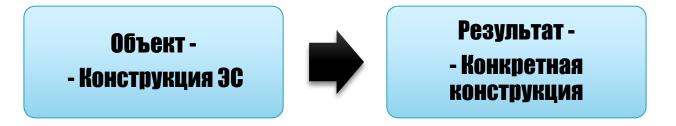
Возможны различные варианты учета знаний предметной области.

Предлагаемый вариант:

Моделирование предметной области. - Конструирование РЭС

ТЗ (техническое задание) – строго определённый набор требований.

Процесс конструирования — действия, проводимые в ходе проектных работ.


Объект – конструкция РЭС, результат проектирования.

<u>Знания</u> – совокупность разнообразных знаний о предметной области

Комментарии к модели ПО

Модель объекта — выполняет две функции:

- описывает собственно класс объектов разработки (конструкция ЭС) со своей геометрией, материалами и т.д;
 - описывает будущее решение как экземпляр класса.

Модель процесса — стратегия и конкретный её вариант реализации в виде набора определённых действий при определённом техническом задании. Самая сложная модель.

Комментарии к модели ПО

Знание – необходимые для получения решения знания:

- формальные знания; знания обязательные к использованию;
- субъективные, статистические, эмпирические знания; вероятность p их использования меньше единицы, p < 1.

ПЗ №2. Сбор и систематизация знаний о предметной области.

- Концептуализация знаний.

Извлечение полного набора знаний о предметной области, структурирование в виде иерархических сущностей со всеми своими отношениями с последующей визуализацией модели.

Результат: - поле знаний (концептуальная модель предметной области), целостное и системное описание предметной области.

Возможны различные варианты построения модели. Далее приведены две основные из них.

Общая методика построения концептуальной модели.

Формирование списка понятий

Вид: "Объект - атрибуты

Пример: "Вибрация – частота,

амплитуда"

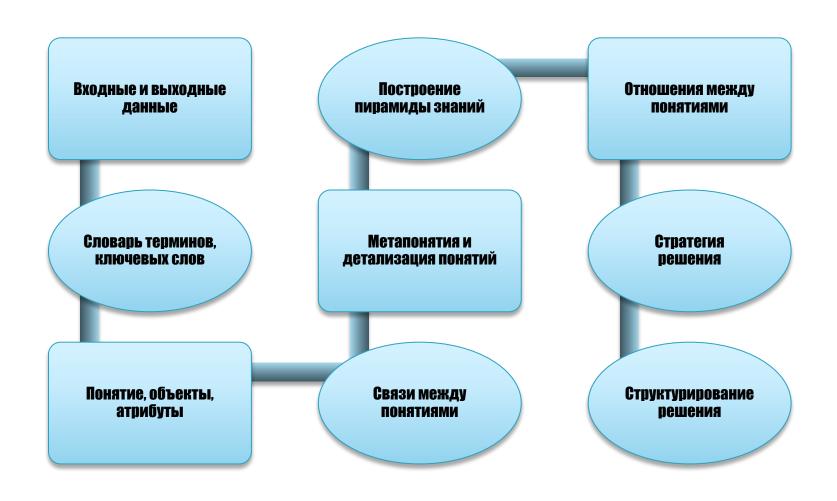
Установление связей между понятиями

Пример: "Вибрация ↔ Воздействие"

Структурирование знаний — - метопонятия Метопонятие: "Воздействие" включает в себя: - "Механические"; - "Тепловые".

Отношения между понятиями

Иерархия отношений, связей.


Стратегия решения

Цепочка рассуждений для получения результата.

Корректировка решения

Выделение эвристик, неточных данных и т.д.

Второй вариант методики построения концептуальной модели.

1. Входные и выходные данные.

Размытое представление уточняется

2. Словарь терминов, ключевых слов.

Извлечение из литературы, "из головы", оглавления книг и т.п.

3. Понятия, объекты, атрибуты.

Отсеивание из словаря, оставить значения, их признаки.

4. Связи между понятиями.

Только намечаются связи, нет их наименования.

5. Метапонятия и детализация понятий.

Структурировать, вводить иерархию, детализировать.

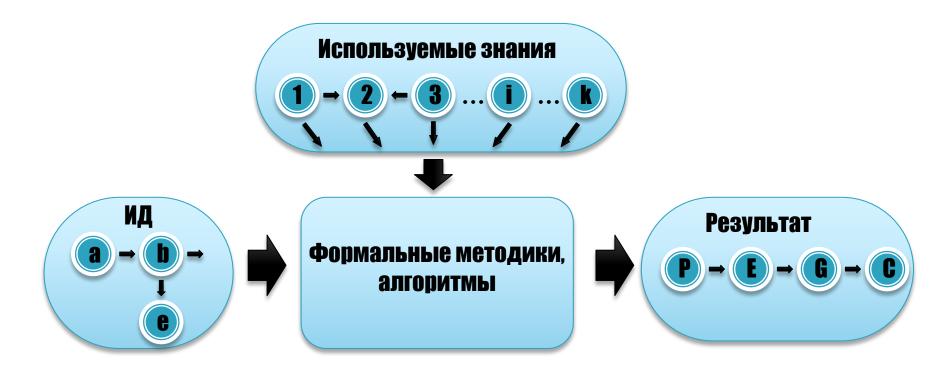
6. Построение пирамиды знаний.

Иерархия понятий.

7. Отношения между понятиями.

Как внутри уровней, так и между уровнями. Дают имена связям.

8. Стратегия решения.


Цепочки рассуждений для получения результата.

9. Структурирование решений.

Корректировка поля знаний.

Рекомендуемая методика Первый этап. Поиск элементов знаний ПО.

результата.

<u>ИД</u> (*исходные данные*) — где a, b, e и т.д — элементы ИД необходимые для работы формальных методик.

<u>Используемые знания</u> — где $1, 2, 3 \dots i \dots k$ — элементы знаний, отсутствующие в ИД, но необходимые для работы формальных методик. <u>Результат</u> — где P,E,G,C — элементы модельного описания объекта —

Второй этап. Работа по известным методикам.

- 1) Систематизация найденных элементов знаний по следующим группам (метапонятия):
- данные T3,
- информация о результате,
- дополнительно использованные знания,
- знания о **процессе** поиска решения.
- 2) Группирование элементов знаний внутри метапонятий построение **иерархии знаний**.
- 3) Поиск предшествующих эвристик для уже используемых.
- 4) Построение графа-маршрута для поиска решения.

Требуемый результат: 1) Диаграмма, граф, рисунок.

2) Использование технологий визуализации ERD, SADT, DFD, UML и т.д.

ПЗ №3. Моделирование знаний по задаче компоновки ЭС

Модель знаний о «Результате» компоновки

ВОПРОС: Что является результатом предварительной компоновки конструкции ЭС?

ОТВЕТ: Форма, размеры, координаты всех элементов конструкции.

Модель «Результата»

_____ иодели «Объекта», как частный случай.

$$S_{\kappa} = \{P, E, g, C\}$$

$$S_{\text{\tiny SM}} \longrightarrow S_{\text{\tiny T}}$$

Результат – это S' без данных о проектировании печатных плат (без размещения и трассировки) и без конструктивных особенностей элементов крепления и т.п.

ВОПРОС: Что такое Р, Е, g, С в формуле выше?

ОТВЕТ: Р – множество принципов. $P = \{p_1, p_2, p_3, ...\}$

 p_1 — модульность;

 p_{γ} – иерархия модулей;

 p_3 – плоскостная организация модулей 1,2 уровня;

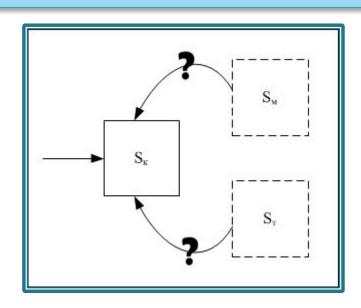
 p_4 – пространственная организация модулей 3,4 уровня;

 p_5 – «порядок» компоновки 1,2 уровней;

 \boldsymbol{p}_6 – «порядок» компоновки 3,4 уровней....

ОТВЕТ: Е – элементы (части).

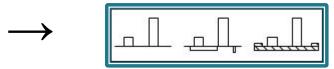
 $E'_{\text{поп}}$ – несущая конструкция;


 $E''_{лоп}$ – элементы защиты;

Е по транить обеспечения режима;

E'''' – элементы управления;

Е по точно в по точно



$$E'_{\text{доп}} = \{ e'_1 - \text{печатная плата}, e'_2 - \text{корпус} \};$$
 $E''_{\text{доп}} = \{ e''_1 - \text{амортизатор}, e''_2 - \text{экран}, \dots \};$
 $E'''_{\text{доп}} = \{ e''_1 - \text{радиатор}, e''_2 - \text{теплоотводящая шина}, \dots \};$
 $E''''_{\text{доп}} = \dots$

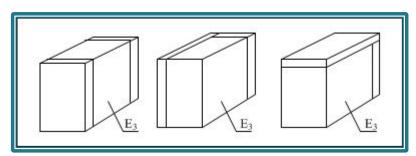
OТВЕТ: g – структура (схема).

g – для модулей 1,2 уровня;

 $g^{"}$ – для модулей 3,4 уровня.

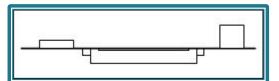
Новый принцип – зоны:

$$E_1 - \pi.\pi;$$


 $E_2 - вх/вых;$

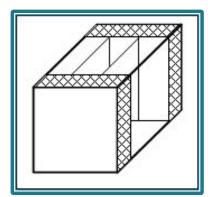
 E_3 – ячейки;

 $E_4 - \dots$


Варианты схем $g^{''}$ - <u>конечный набор</u> \to <u>выбор</u>!

Двумерные (плоские) зоны $E_1, E_2, \ldots \to g^{''}_{E1,E2}$

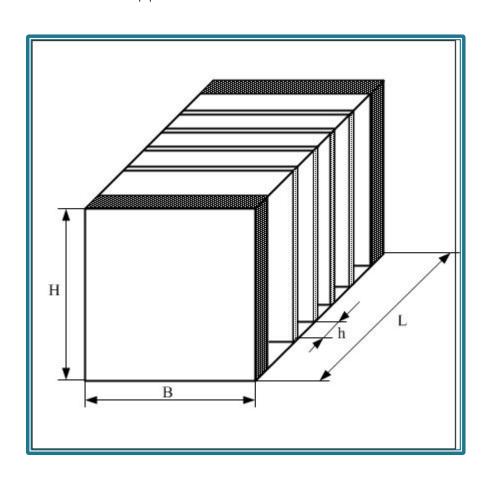



Трёхмерная зона (объёмная) зона E_3 с ячейками

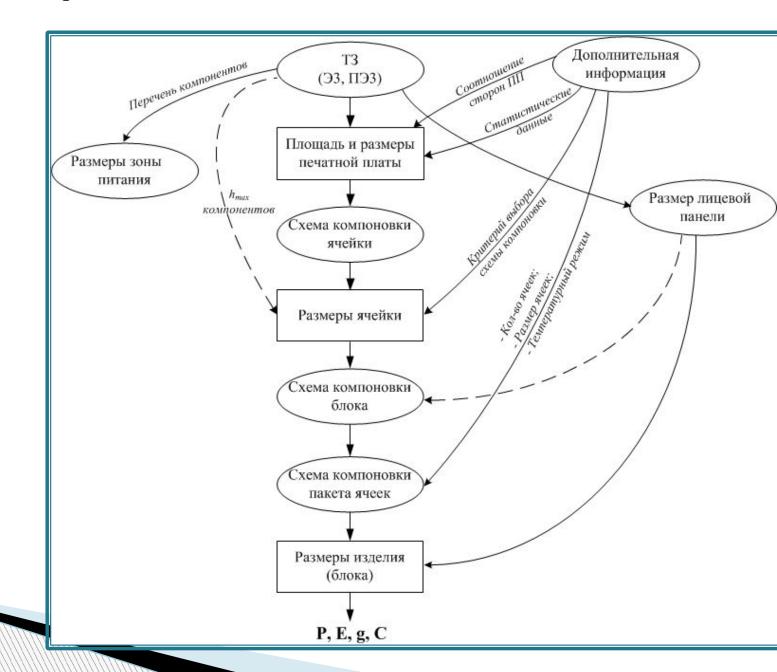
Варианты схем g_{E3} :

<u>Конечный набор</u> \rightarrow <u>выбор</u>!

Общие схемы g:

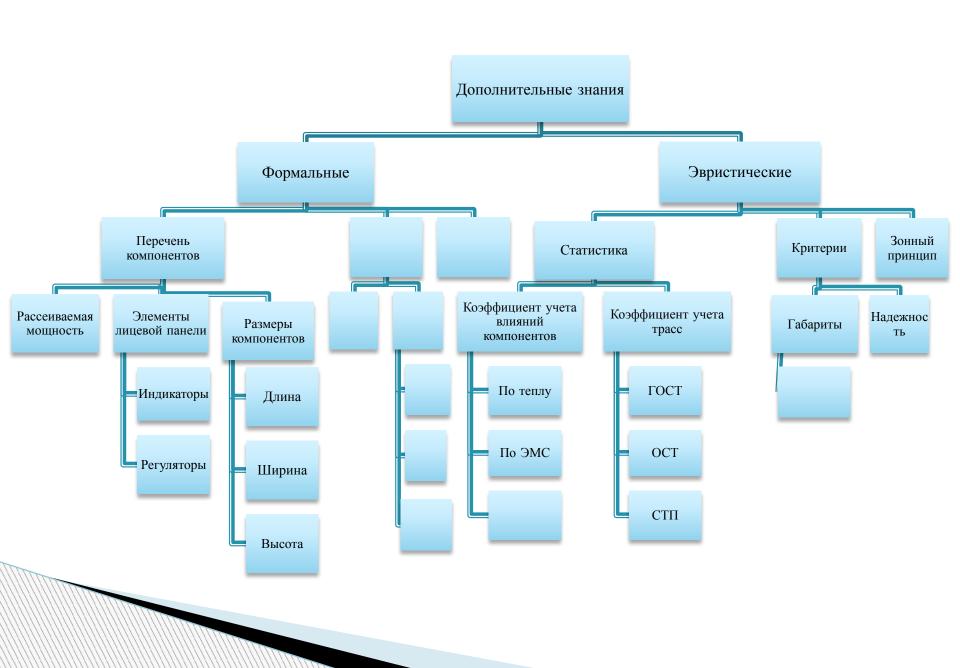


<u>Конечный набор</u> \rightarrow <u>выбор</u>, а не <u>синтез</u>!


ОТВЕТ: С – конституэнты, множество параметров.

Пример: координаты


$$C = \{L, B, H, h, ...\}$$
 для блока и ячеек


Модель знаний о «Процессе » компоновки

Модель знаний о «ТЗ» компоновки

Модель « Дополнительные знания» по компоновке

