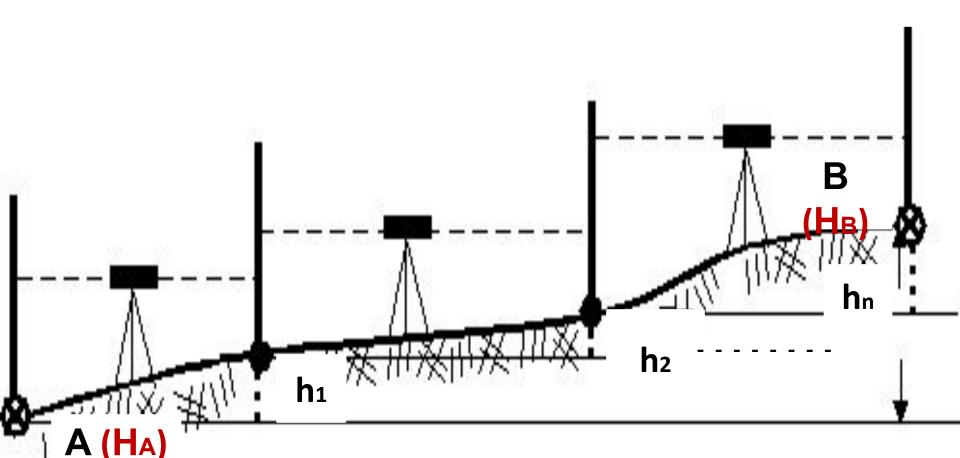
МАТЕМАТИЧЕСКАЯ ОБРАБОТКА ИЗМЕРЕНИЙ В НИВЕЛИРНОМ ХОДЕ


(Уравнивание хода)

В нивелирном ходе результатами измерений являются превышения

 h_1, h_2, \ldots, h_n .

Исходные данные – это отметки исходных пунктов хода, начального и конечного:

HA, HB.

Если бы измеренные превышения точно соответствовали своим истинным (теоретическим) значениям, то выполнялось бы следующее геометрическое условие:

Однако, в измерениях всегда присутствуют ошибки. Причины: несовершенство приборов, неточная их установка, влияние погодных условий, личные ошибки наблюдателя. Поэтому при замене истинных (теоретических) величин измеренными строгость геометрического условия нарушается, и в правой части появляется величина, называемая невязкой:

$$\Sigma$$
 h изм. –(H кон. – H нач.) = fh. Или fh = Σ h изм. – Σ h теор.

Невязка – это разность между измеренным и теоретическим значением величины (суммой величин)

НЕВЯЗКА = ПРАКТИКА - ТЕОРИЯ

Уравнивание – это математическая обработка измерений с целью ликвидации невязки

В измерения вводят **поправки V** так, чтобы сумма поправок равнялась невязке с обратным знаком:

$$\Sigma V = -fh$$

Поправки распределяют обратно пропорционально длинам секций или числу станций в секции:

$$V_i = (-f_h / \Sigma L) * L_i$$
 или $V_i = (-f_h / \Sigma n) * n_i$

Измерение + поправка = уравненная величина:
$$h_{\text{изм.}} + V = h_{\text{ур.}}$$

Тогда
$$\Sigma$$
 h yp. = Σ h теор. или Σ h yp. = Hв - HA

Чтобы вычислить отметки определяемых пунктов хода, нужно к предыдущей отметке прибавить уравненное превышение между соответствующими точками:

H послед. = H пред. + h ур. Контроль: $H_n + h$ ур. = H кон.

Работа № 3

УРАВНИВАНИЕ НИВЕЛИРНОГО ХОДА

Цель работы: выполнить математическую обработку измерений в нивелирном ходе.

Содержание работы:

- 1. Найти сумму измеренных превышений: **Σ h изм. = h1 + h2 + ... +h**n.
- 2. Найти теоретическую сумму превышений: **Σ h теор. = Нкон. –Ннач.**
- 3. Вычислить невязку нивелирного хода: $f_h = \sum h$ изм. $\sum h$ теор. Выразить невязку в мм.
- 4. Вычислить длину хода: $\Sigma L = L_1 + L_2 + ... + L_n$.
- 5. Вычислить допустимую невязку: fh доп. = 50 мм × L, км (до 0,1 мм).
- 6. Вычислить поправки в превышения: Vi = (-fh / Σ L) × Li (до целых).
- Выполнить контроль правильности вычисления поправок: Σ V = -fh. При расхождении в 1 − 2 единицы исправить V так, чтобы равенство выполнялось точно.
- 8. Вычислить уравненные превышения: h ур. = h изм. + V.
- 9. Выполнить контроль правильности вычисления уравненных превышений: Σ h yp. = Σ h теор. , т. е. Σ h yp. = H кон. Ннач.
- 0. Вычислить отметки определяемых пунктов: **H** i+1 = **H** i + **hyp.** i.
- 1. Выполнить контроль правильности вычисления отметок: **H** n + h yp. n = **H** кон.

№ пункта	№ секции	Длины секций L (км)	Измеренные превышения h изм. (м)	Поправк и V (мм)	Уравненны е превышен ия	Отметки Н (м)
1 (нач.)						500,000
	1	0,8	+ 2,128			
2	2	1.2	. 1 015			
	2	1,2	+ 1,015			
3	3	1,4	- 3,437			
4	4	0,9	-2,899			
5	5	1,5	-1,554			
6	6	0,6	-1,671			
7	7	1,3	+ 2,870			
8	8	1,7	+ 3,208			
9	9	0,7	-1,732			
10/						
10 (KOH.)						498,064
_						

$$\Sigma$$
 h teop. = H_{KOH}. - H_{Hay}. = M

$$f_h = \sum_{i=1}^{n} h_{i}$$
 изм. $-\sum_{i=1}^{n} h_{i}$ теор. $=\sum_{i=1}^{n} h_{i}$

L, км =
$$\Sigma$$
 L – длина хода

Контрольные вопросы

- 1. Что измеряют в нивелирном ходе?
 - . Что является исходными данными в нивелирном ходе?
- 3. Что такое невязка?
- 4. Как вычислить невязку нивелирного хода?
- Что называется уравниванием?
 - Как вычислить поправки в превышения с контролем?
- 7. Как вычислить уравненные превышения с контролем?
- 8. Как вычислить отметки пунктов хода с контролем?