МИНИСТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ

Государственное образовательное учреждение высшего образования Московской области МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОБЛАСТНОЙ УНИВЕРСИТЕТ (МГОУ)

Кафедра высшей алгебры, элементарной математики и методики преподавания математики

КУРСОВАЯ РАБОТА

по курсу «Элементарная математика» тема: «Задачи с параметром в материалах Государственной итоговой аттестации и методы их решения.

(По материалам ЕГЭ за последние 5лет)»

Выполнил студент:

11 группы 1 курса очной формы обучения физико-математического факультета Иванова Кира Кирилловна

Научный руководитель:

Ст. преподаватель Высоцкая П. А.

Цель:

Изучение задач с параметрами в материалах государственной итоговой аттестации и методов их решения.

Задачи:

- 1. Провести теоретический анализ литературы по данной теме;
- 2. Дать определение параметра, рассмотреть типы задач с параметром; выделить основные методы их решения;
- 3. Подобрать серию задач с параметром, решаемых с помощью основных методов.

Введение:

последние годы задачи с параметрами постоянно заданиях Государственной содержатся В итоговой аттестации по математике, а умение решать данные задачи МНОГОМ является залогом BO достижения высокого экзаменационного балла. Данные задачи позволяют проверить владение формулами элементарной математики, методами решения уравнений и неравенств, определить навыки математической исследовательской деятельности, уровень логического мышления учащегося.

Определение понятия «параметр» и «задача с параметром»

Параметр – это независимая переменная, значение которой в данной задаче считается фиксированным.

Задача, условие которой содержит или в ходе решения которой появляется хотя бы одна независимая переменная, удовлетворяющая определению понятия «параметр», называется задачей с параметрами.

Типы задач с параметром, встречающиеся в материалах Государственной итоговой аттестации

1) Найти все значения параметра, для каждого из которых выполняются те или иные условия (уравнение, неравенство или система имеют определённое число решений; решение принадлежит определённому множеству или удовлетворяет определённым ограничениям и т. п.; сами решения находить при этом, как правило, не требуется).

Пример. Найдите все значения a, при каждом из которых уравнение

$$|x-a^2+a+2|+|x-a^2+3a-1|=2\alpha-3$$

имеет корни, но ни один из них не принадлежит интервалу (4;19).

Типы задач с параметром, встречающиеся в материалах Государственной итоговой аттестации

2) Найти все значения параметра, при каждом из которых задача имеет хотя бы одно решение, и указать эти решения для каждого такого значения параметра (кратко: «при каждом значении параметра решить уравнение (неравенство, систему)».

Пример. При каждом значении параметра *а* решить неравенство

$$\frac{5}{x-3a} > 3a.$$

Сравнительный анализ задач с параметром демоверсий ЕГЭ по математике ФИПИ с вариантами досрочного и основного этапа ЕГЭ

Рассмотрев и сравнив задачи с параметром из вариантов демоверсий ФИПИ, досрочного и основного этапа ЕГЭ за последние пять лет можно сделать выводы о том, что задачи с параметром демоверсий ФИПИ во всех случаях совпадают с задачами досрочного и основного этапа ЕГЭ и относятся к первому типу, описанному нами выше.

Аналитический метод

Основной частью аналитического метода решения задач является метод эквивалентных или равносильных преобразований. Предлагаемый подход к решению уравнений и неравенств с параметрами, их систем или совокупностей основан на замене одного математического высказывания другим равносильным математическим высказыванием. Задача рассматривается как некоторое логическое высказывание, область истинности которого предстоит установить в результате его рассмотрения. При этом исходное условие рядом равносильных преобразований или преобразований следствий приводится к совокупности простейших логических утверждений, истинность или ложность которых считается установленной.

В аналитическом методе решения задач чаще всего используется приём дробления — разделение условия задачи на совокупность более простых условий.

Аналитический метод

Пример. Найдите все значения параметра a , для каждого из которых уравнение

$$\frac{2x^2 - 6x + 3}{x^2 - 3x + 4} = \alpha + 1$$

имеет хотя бы один корень.

Решение:

$$(x^{2} - 3x + 4) (\alpha + 1) = (2x^{2} - 6x + 3)$$

$$x^{2}a + x^{2} - 3xa - 3x + 4a + 4 = 2x^{2} - 6x + 3$$

$$x^{2}a + x^{2} - 3xa - 3x + 4a + 4 - 2x^{2} + 6x - 3 = 0$$

$$x^{2}a - x^{2} - 3xa + 3x + 4a + 1 = 0$$

$$(\alpha - 1)x^{2} - 3(\alpha - 1)x + 4\alpha + 1 = 0$$

Решение:

При a=1 уравнение не имеет корней

При
$$a \ne 1$$

$$D = 9(a-1)^2 - 4(a-1)(4a+1) =$$

$$= 9(a^2 - 2a+1) - 4(4a^2 + a - 4a - 1) =$$

$$= 9a^2 - 18a + 9 - 16a^2 + 12a + 4 =$$

$$= -7a^2 - 6a + 13$$

$$a_1 = \frac{6-20}{-14} = 1$$
 $a_2 = \frac{6+20}{-14} = -\frac{13}{7}$

$$-7a^2 - 6a + 13 = -7(a-1)(a + \frac{13}{7})$$

$$(a-1)(a+\frac{13}{7}) \le 0$$

Ответ: $\left[-\frac{13}{7}; 1\right)$

Графический метод

Любая задача с параметрами есть задача как минимум с двумя переменными — аргументом и параметром. Следовательно, решение задачи - упорядоченный набор их значений, может рассматриваться как координаты точки некоторого евклидова пространства. Данный метод лучше всего работает, если условие задачи содержит вопрос о количестве корней в зависимости от значений параметра или определения значений параметра, при которых решение отсутствует или единственно.

Графический метод

Пример. Найти все значения параметра a, при каждом из которых хотя бы одно решение неравенства

$$x^2 + |x + a - 3| + 5 \le 5x + a$$

принадлежит отрезку [1;2].

Решение.

$$|x + a - 3| \le 5x + a - 5 - x^2$$

$$\begin{cases} x + a - 3 \le 5x + a - 5 - x^2 \\ x + a - 3 \ge -5x - a + 5 + x^2 \end{cases}$$

$$\begin{cases} x + a - 3 - 5x - a + 5 + x^2 \le 0 \\ x + a - 3 + 5x + a - 5 - x^2 \ge 0 \end{cases}$$

$$\begin{cases} x^2 - 4x + 2 \le 0 \\ -x^2 + 6x - 8 \ge -2a \end{cases}$$

$$\begin{cases} x^2 - 4x + 2 \le 0 \\ x^2 - 6x + 8 \le 2a \end{cases}$$

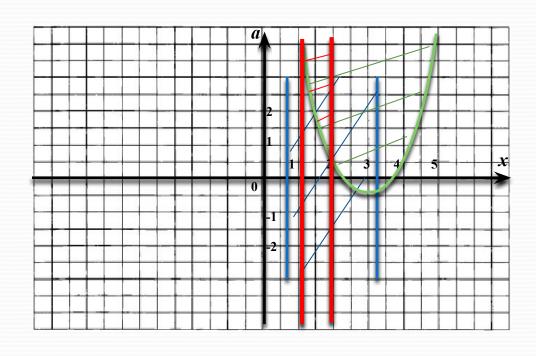
$$\begin{cases} x^2 - 4x + 2 \le 0\\ \frac{x^2}{2} - 3x + 4 \le \alpha \end{cases}$$

$$\begin{cases} x^2 - 4x + 2 \le 0 \\ a \ge \frac{x^2}{2} - 3x + 4 \end{cases}$$

Графический метод

Решение:

$$x^2 - 4x + 2 = 0$$


$$x_1 = 2 - \sqrt{2}$$

$$x_2 = 2 + \sqrt{2}$$

$$a \ge \frac{x^2}{2} - 3x + 4$$

$$\begin{cases} x^2 - 4x + 2 \le 0 \\ a \ge \frac{x^2}{2} - 3x + 4 \end{cases}$$

Otbet: $\alpha \in [0; +\infty)$

Заключение:

Цель данной работы состояла в изучении задач с параметрами в материалах государственной итоговой аттестации и методов их решения.

Изучив и проанализировав задачи с параметрами в материалах ЕГЭ по математике за последние пять лет, было выявлено, что в большинстве случаев встречаются задачи первого типа рассмотренной нами классификации. Для решения этих задач в основном используются аналитический и графический методы.

Для закрепления навыков решения задач с параметром была подобрана серия данных задач.

Таким образом, задачи выполнены, цель работы достигнута.

Спасибо за внимание!