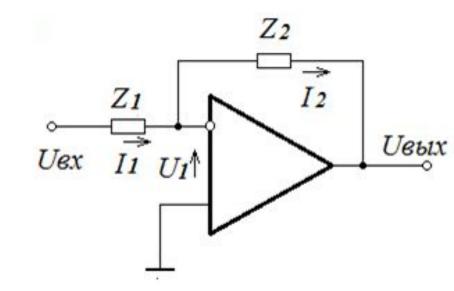

Схемотехника аналоговых электронных устройств

Практика 8. Операционные усилители и устройства на их основе

Введение

- ОУ и устройства на их основе имеют значительные преимущества по сравнению с транзисторами и устройствами на их основе, поэтому этой теме нужно уделить значительное внимание.
- В следующем семестре нам предстоит выполнить курсовой проект по «Схемотехнике», в процессе выполнения которого нужно спроектировать различные аналоговые устройстваб выполнить расчет, проверить результаты расчета моделированием, а также оформить пояснительную записку к КП в соответствии с правилами оформления технической документации.
- Ввиду значительного упрощения расчета схем и характеристик устройства, в качестве активных элементов рекомендуется применение ОУ.
- Большая часть КП выполняется на тему активных фильтров, это тема последней контрольной работы, которую сегодня рассмотрим.

Операционные усилители


Характеристики близки к идеальному усилителю:

- полоса пропускания от 0 до ∞ ,
- коэффициент усиления $\rightarrow \infty$,
- $R_{BX} \rightarrow \infty$
- RB \mapsto 0.

В схемах ОУ применяются типовые узлы на транзисторах и диодах, рассмотренные в лекциях: источники тока, токовые зеркала, дифференциальные каскады, схемы снижения потенциалов, буферные каскады, двухтактные каскады и пр.

Обратные связи в ОУ

- Цепь обратной связи образуется посредством включения двухполюсника обратной связи Z2 между инвертирующим входом и выходом операционного усилителя.
- Коэффициент передачи ОУ, прямо пропорционален сопротивлению двухполюсника Z2, включенного между выходом и инвертирующим входом операционного усилителя и обратно пропорционален сопротивлению двухполюсника Z1, включенного между входом и источником сигнала.

• При
$$Rex \to \infty$$
, $I_1 = I_2$.
$$I_1 = \frac{U_{BX} - U_1}{Z_1} \ I_2 = \frac{U_1 - U_{BbIX}}{Z_2}$$

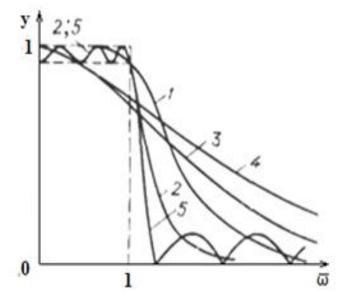
При условии $Ku \rightarrow \infty$,

$$K_{o.c} = Uebix/Uex = -Z_2/Z_1$$

Активные фильтры

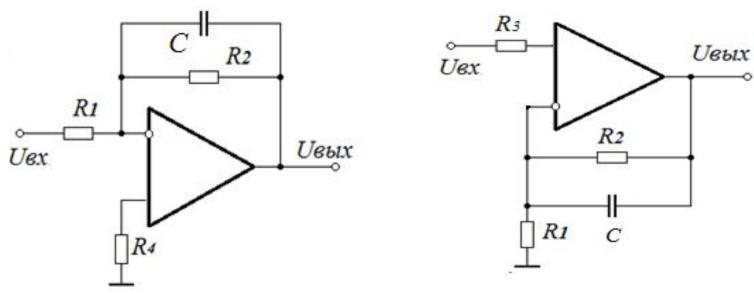
Устройства на основе частотнозависимых ОС

Типы: фильтры нижних частот (ФНЧ), $(\Phi B \Psi),$ фильтры верхних частом фильтры полосовые (режекторные) заграждающие (РФ), избирательные фильтры (селективные) фильтры (СФ).


Передаточная функция ФНЧ:

$$W_{\Phi HY}(P) = K_0/(1 + a_1 p + a_2 p^2 + ... + a_n p^n)$$

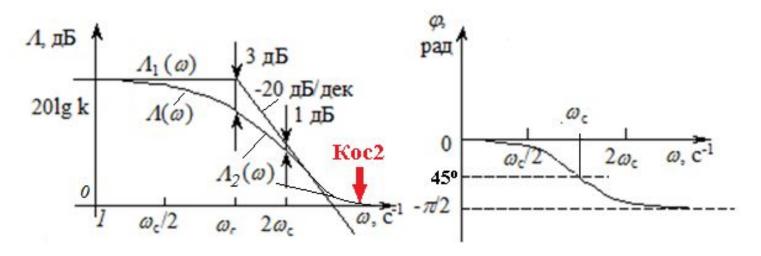
Полиномы 1. Батерворта,


- 2. Чебышева, 3. Бесселя,
- 4. RC фильтр,
- 5. Эллиптический фильтр (имеет нули одинаковой схеме фильтра. $\Pi\Phi$)

Прототипы всех фильтров — ФНЧ.

Фильтры отличаются в крутизне спада АЧХ за полосой пропускания при одинаковом порядке и

Активные фильтры нижних частот

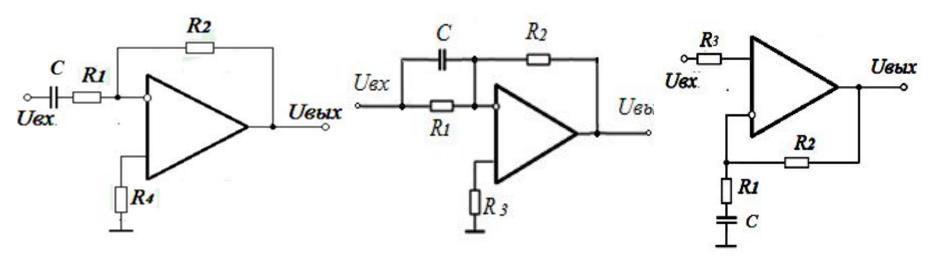


ОС включается между выходом и инвертирующем входом!

- Коэффициент усиления с учетом обратной связи и изменения полярности: $K_{OCI} = -R_2/R_1$, $K_{OC2} = 1 + R_2/R_1$
- Постоянная времени цепи ОС $\tau = R_2 C$,

$$K(j\omega) = -\frac{R_2}{R_1} \cdot \frac{1}{1 + j\omega R_2 C} \qquad |K(j\omega)| = K_{OC} \cdot \frac{1}{\sqrt{1 + \omega^2 \tau^2}}$$

ЛАЧХ фильтров нижних частот

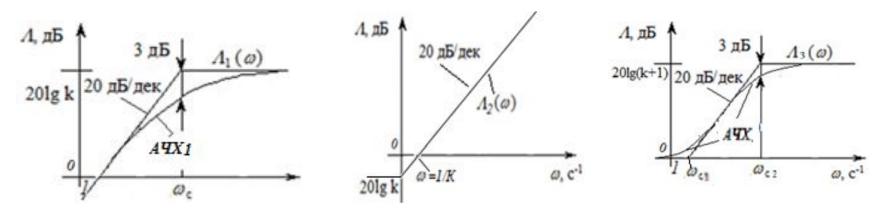


В ЛАЧХ по горизонтальной оси откладываются частоты в логарифмическом масштабе, по вертикальной оси — коэффициент передачи в децибелах (дБ), Λ =20lg|K(ω)|.

Максимальная разница между АЧХ и ЛАЧХ составит 3 дБ на частоте сопряжения, совпадающей с верхней частотой $\omega e = 2\pi f e$.

$$\Lambda_1(\omega) = \frac{20 \lg |K|}{\sqrt{1 + \omega^2 T^2}} \qquad \varphi(\omega) = -\operatorname{arctg} \omega T$$

Активные фильтры верхних частот

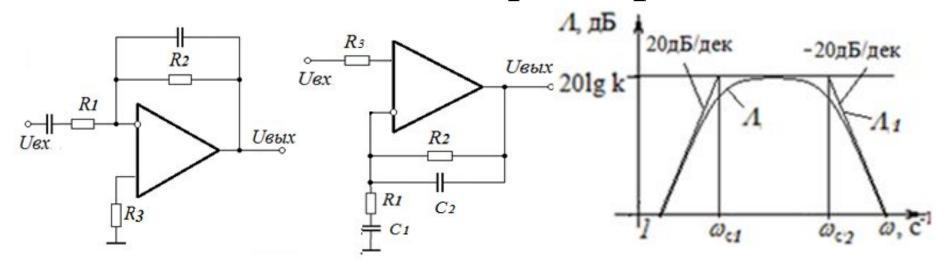


• $K_{OCI,2}$ =- R_2/R_1 , K_{OC3} = $I+R_2/R_1$ коэффициент усиления с учетом обратной связи и изменения полярности, $\tau = R_1 C - постоянная времени цепи ОС.$

$$|K(j\omega)| = K_{OC} \cdot \frac{\omega \tau}{\sqrt{1 + \frac{2}{2} + \frac{2}{2}}}$$

 $|K(j\omega)| = K_{OC} \cdot \frac{\omega \tau}{\sqrt{\log 2^2}}$ ФВЧ 1 можно рассматривать как последовательно $\sqrt{\log 2^2}$ дифференцирующего устройства, см. лекции, с $K\partial u \phi = \omega \tau$ и ФНЧ, с частотой сопряжения $\omega c = 1/\tau$. Действие ФНЧ компенсирует подъем ЛАЧХ с частоты сопряжения и получается горизонтальная линия.

ЛАЧХ разных фильтров верхних частот


ФВЧ 1 - последовательное соединение дифференцирующего устройства с $K\partial u \phi = \omega \tau$ и ФНЧ, с частотой сопряжения $\omega c = 1/\tau$, компенсирует подъем ЛАЧХ с частоты ωc

ФВЧ 2 - дифференцирующее устройство, ограничение *K=R2/R1*

ФВЧ 3 – неинвертирующий, отличается от ФВЧ 1 коэффициентом передачи на НЧ, равным 1 и наличием двух частот сопряжения, $\omega_{C1} = 1/kT$ и $\omega_{C2} = 1/T$.

$$\Lambda_1(\omega) = \frac{20 \lg |K| \cdot \omega T}{\sqrt{1 + \omega^2 T^2}} \qquad \Lambda_2(\omega) = 20 \lg |K| \cdot (1 + \omega T) \qquad \Lambda_3(\omega) = 1 + \frac{20 \lg |K| \cdot \omega T}{\sqrt{1 + \omega^2 T^2}}$$

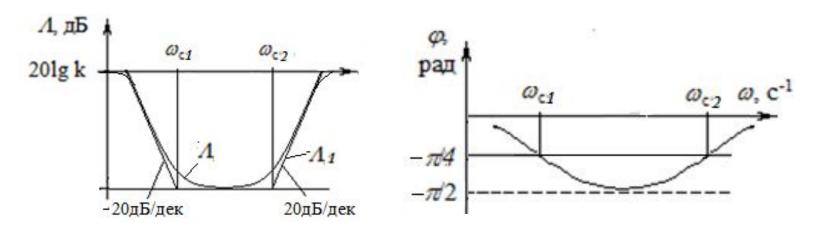
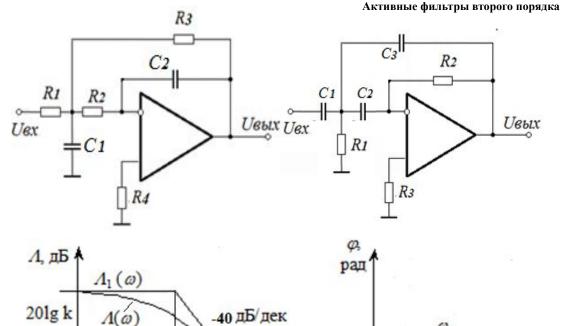
Полосовые фильтры

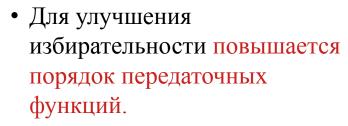
Объединение цепей ОС фильтров низких и высоких частот Постоянные времени для верхних и нижних частот существенно отличаются, расчет АЧХ независимый,

$$R_{I}C_{I} = \tau_{H} = 1/2\pi f_{H}, \qquad R_{2}C_{2} = \tau_{B} = 1/2\pi f_{e}.$$

Коэффициенты усиления $K_{OC\ I} = -R_2/R_I$, для неинвертирующего — $K_{OC\ 2} = 1 + R_2/R_I$.

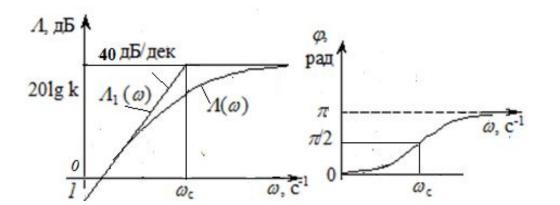
Режекторные фильтры


Схема как у полосовых фильтров, отличие частотной характеристики режекторного фильтра в том, что действие ФНЧ проявляется на нижних частотах, а ФВЧ — на верхних частотах, что обеспечивается соответствующим выбором постоянных времени фильтров.

Oc.

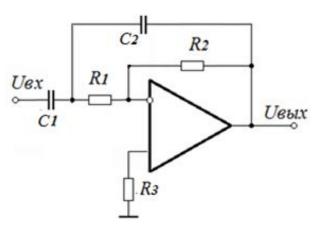
ω, c-1

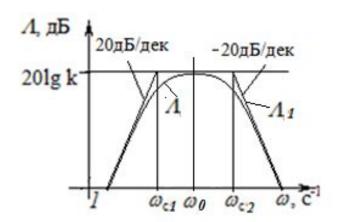


При условии $R_1 = R_2$ частота сопряжения для ФНЧ $\omega_{C} = \frac{\sqrt{R_{2}R_{3}C_{1}C_{2}}}{\sqrt{R_{2}R_{3}C_{1}C_{2}}}$

При условии $C_1 = C_2$ для ФВЧ частота сопряжения:

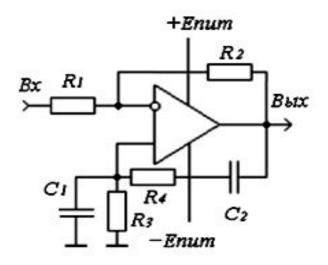
$$\omega_C = \frac{1}{\sqrt{R_1 R_2 C_2 C_3}}$$

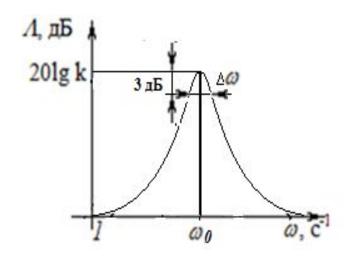

Выражения означают равенство на частоте сопряжения постоянных времени $\tau_1 = \tau_2$ в цепи ОС.



Oc.

 $-\pi d^2$


Селективные фильтры



- Выделяют сигналы в узкой полосе рабочих частот. В полосовых фильтрах элементы ФВЧ и ФНЧ действовали независимо на своих частотах. При сближении *fн* и *fв* элементы фильтров начинают влиять друг на друга, что необходимо учитывать при расчетах: коэффициент передачи определяется отношением постоянных времени
- Основные расчетные соотношения: коэффициент усиления, полоса пропускания, центральная частота

$$K_{0} = -\frac{R_{2}C_{2}}{R_{1}C_{1}} \qquad \frac{\Delta\omega}{\omega_{0}} = \frac{\omega_{c2} - \omega_{c1}}{\omega_{0}} = \sqrt{\frac{R_{1}C_{1}}{R_{2}C_{2}}} \qquad \omega_{0} = \frac{1}{\sqrt{R_{1}C_{1}R_{2}C_{2}}}$$

Мост Вина, использование одновременно положительной и отрицательной обратных связей, на частоте резонанса происходит компенсации действия отрицательной ОС действием положительной ОС. Отрицательная частотно-независимая ОС - делитель $R_1 - R_2$, положительная ОС – частотно-зависимая, по схеме является полосовым фильтром. При полной компенсации действия ООС - отсутствие ОС на частоте резонанса: $Ko > 10^5 - 10^6$ (коэффициент усиления ОУ на частоте резонанса), добротность $Q \rightarrow \infty$.

Из требований стабильности $\mathit{Ko} \leq$ 60-80 дБ, $\mathit{Q} \leq$ 100-200.

- Максимальная глубина ПОС и резонанс возникает при равенстве постоянных времени R_3 , $C_1 = R_2$, C_2
- При $R_3 = R_4 = R$ и $C_1 = C_2 = C$ частота резонанса $f_o = 1/2\pi RC$,

Коэффициент передачи частотно-независимой отрицательной ОС

$$\beta_{ooc} = R_1/(R_1 + R_2),$$

коэффициент передачи положительной ОС на частоте резонанса, $\beta_{\text{пос}} = 1/3$.

На частоте резонанса, $\beta_{\text{пос}} = \beta_{\text{оос}}$ откуда получаем выражение для расчета резисторов ООС, соответствующих границе устойчивости : $(R_1 + R_2) / R_1 \le 3$.

Для получения высокой добротности необходимо выполнить соотношения между активными и реактивными составляющими на частоте резонанса, ограничивающие величину резисторов ПОС:

$$R \ge Q/\omega_0 C$$
, при $Rex oy >> R = R_3 = R_4$.

Мост Вина, расчетные соотношения

На добротность также влияет сопротивление цепи ООС, поэтому необходимо выбирать величину резистора, чтобы выполнить условие:

RBX oy>
$$R_2$$
.

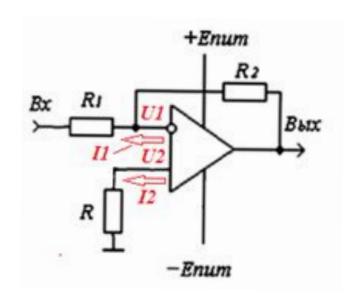
Величина резистора R, определяется необходимой добротностью:

$$R2=2R_{1}-R_{1}/Q$$

При $R_2 > 2R_1$ не выполняется условие устойчивости, и схема превращается в автогенератор на мосте Вина.

Максимальный коэффициент усиления (при резонансе) при указанных ограничениях $Kpes\approx 3Q$.

На частотах $\omega \to \infty$ и $\omega \to 0$, глубина ПОС $\to 0$ из-за наличия конденсаторов в параллельной и последовательных цепях, поэтому коэффициент усиления определяется глубиной ООС.

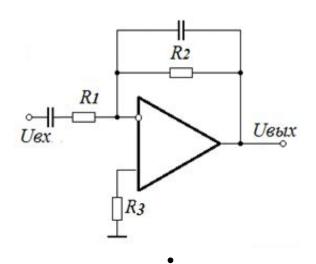

$$K_0 = K \infty = -R_2/R_1$$
.

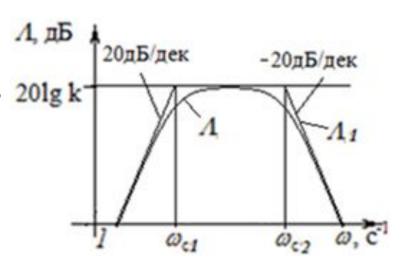
Температурная стабилизация параметров ОУ.

Зависимость напряжения смещения Ucm от температуры описывается температурной чувствительностью ОУ dUcm/dT. Смещение вызвано разностью напряжений эмиттерных переходов из-за несимметрии транзисторов. Изменение тока смещения описывает выражение:

$$\Delta I_{ex} = I_{601} - I_{602} = I_{901} / H_{211} - I_{902} / H_{212}$$
 Величина смещения определяется отношением токов эмиттеров входных транзисторов в диапазоне температур:

$$U_{\scriptscriptstyle \mathcal{O}\!\!M} = \phi_T \ln \left(I_{\scriptscriptstyle \mathcal{D}\!\!\backslash 1} / I_{\scriptscriptstyle \mathcal{D}\!\!\backslash 2} \right)$$




Для выполнения условия U1=U2=I1*R1||R2=I2*R, необходимо выполнить условие компенсации R=R1||R2.

Пример расчета. Полосовой фильтр

- Задание. Рассчитать ПФ со следующими характеристиками:
- Верхняя частота 1 МГц;
- Нижняя частота 10кГц;
- Коэффициент усиления Ко=20дБ.
- Характеристики ОУ считать идеальными.
- 1. Принимаем величину резистора R2<<RвхОУ, R2=10кОм.
- 2. Определяем величину резистора R1, обеспечивающего нужный коэффициент усиления Ko=10 раз
- R1=R2/Ko=1кОм
- Из условия термостабилизации определяем величину R3=R2, так как R1 включен последовательно с емкостью и постоянный ток через него отсутствует

. Схема ПФ

Продолжение расчета ПФ

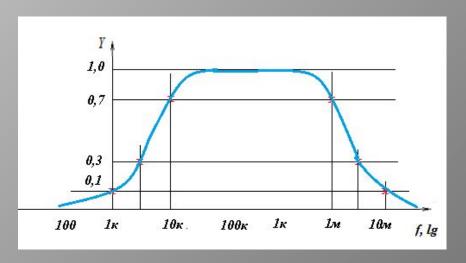
• 1. Постоянную времени цепи ОС, ограничивающую АЧХ на верхних частотах, определим из выражения

$$|K(j\omega)| = K_{OC} \cdot \frac{1}{\sqrt{1 + \omega^2 \tau^2}}$$

- Откуда из условия $Y_B = K(j\omega)/K_O = 1/\sqrt{2}$ определяем $\tau_B = 1/2\pi f_B = 1/6,28*1 M\Gamma \psi = 0,16 mc$
- Из выражения $\tau_{\theta} = R2*C2$, находим C2=0,16мкс/10кОм= $0,16*10^{-8}$ Ф=1,6 нФ
- 2. Постоянную времени цепи ОС, определяющую нижнюю частоту, определим из выражения

- Из условия $Y_H=1/\sqrt{2}$ находим
- $\tau_H = 1/2\pi f_H = 1/6, 28*10\kappa \Gamma y = 0,16*10^{-4} = 1,6 \text{ MC}$
- Из выражения тн=R1*C1,
 находим
 C1=0,16мс/1кОм=0,16*10-6Ф=0,1
 6 мкФ

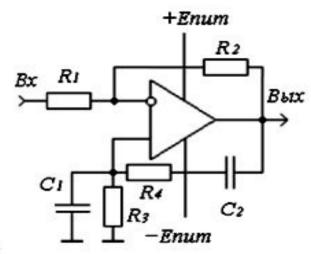
$$YH(\omega) = \frac{1}{\sqrt{1 + \frac{1}{\omega^2 T_{\pi}^2}}}$$

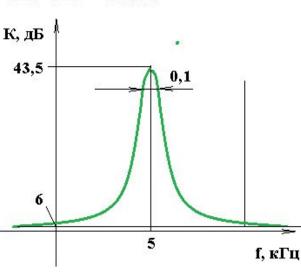

Построение **АЧХ** каскада в логарифмическом масштабе

В логарифмической шкале длина отрезка частоты от начальной, $1 \Gamma \mu$, пропорциональна логарифму отношения величин, $f/1\Gamma \mu$.

$$lg0,1=-1; lg1=0; lg10=1;$$

 $lg100=2, lg2\approx0,3, lg3=0,5 u$
 $lg5\approx0,7$


Погарифмическая шкала должна с запасом перекрывать весь диапазон рабочих частот, 10 кГц-1 МГц


График удобно строить, определяя значения Y на частотах $f = 10fe = 10M\Gamma y$, $f = 3fe = 3M\Gamma y$, $f = fe = 1M\Gamma y$, f = fh, f = 0, $3fh = 3\kappa\Gamma y$, f = 0, $1fh = 1\kappa\Gamma y$ Соответственно, значение ЛАЧХ на этих частотах Y = 0.7: Y = 0.316: Y = 0.1

Пример расчета. Резонансный фильтр

- Задание. Рассчитать фильтр на частоту резонанса fo=5к Γ ц, с добротностью Q=50. Использовать ОУ с Rвх>1МОм, Ko= 10^{5} , f_1 =100М Γ ц
- Решение: Цепь ПОС
- 1. $R3=R4=R=R_{BX}/100=1MO_{M}/100=10_{K}O_{M}$
- 2. C1=C2=C= τ/R , $\tau=RC=1/2\pi$ fo
- $C=1/2\pi \text{foR}=1/6,28*5*10^3*10^4=0,3*10^6=300\text{H}\Phi$
- . Цепь ООС
- 1. $R1 = R_{BX}/10 = 1MO_{M}/10 = 100 \kappa O_{M}$
- $Q = \frac{R_1}{2R_1 R_2}$
- 2. $R2=2R1-R1/Q=200-100/50=196\kappa O_{M}$
- **Итог**: Q=100/(200-196)=50. $\Delta f=fo/Q=5/50=100\Gamma \mu$
- Ko=3Q= $3*50=150 \text{ K}(0)=\text{K}(\infty)=\text{R2/R1}=200/196\approx2$

