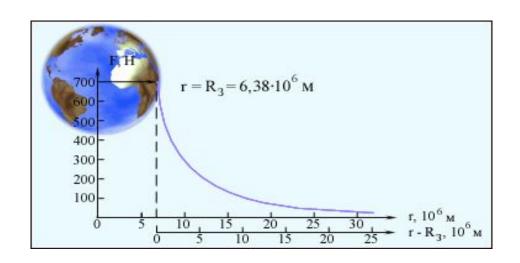
Сила тяжести. Сила упругости. Вес тела.

ПРОЯВЛЕНИЯ ЗАКОНА ВСЕМИРНОГО ТЯГОТЕНИЯ

□ Одним из проявлений силы всемирного тяготения является сила тяжести. Так принято называть силу притяжения тел к Земле вблизи ее поверхности. Так как масса планеты велика, то и сила притяжения к ней существенно превышает силу взаимного гравитационного притяжения любых двух тел.

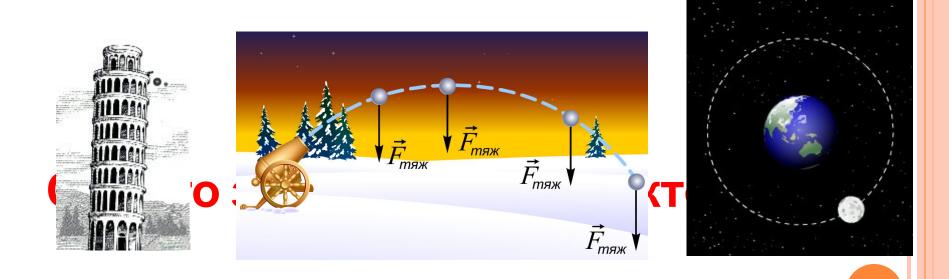

СИЛА ТЯЖЕСТИ

Сила тяжести– сила, с которой Земля притягивает к себе различные тела

$$F = mg$$

Приложена к центру тела, направлена к центру Земли, убывает при удалении от Земли.

$$g = 9.8 \text{M/}c^2$$


ДВИЖЕНИЕ ПОД ДЕЙСТВИЕМ силы тяжести

- Движение тела под действием силы тяжести называется свободным падением.
- □ Так как гравитационная сила пропорциональна массе, то все тела вблизи Земли падают с одинаковым ускорением

$$a = \frac{F_T}{m} = \frac{mg}{m} = g$$

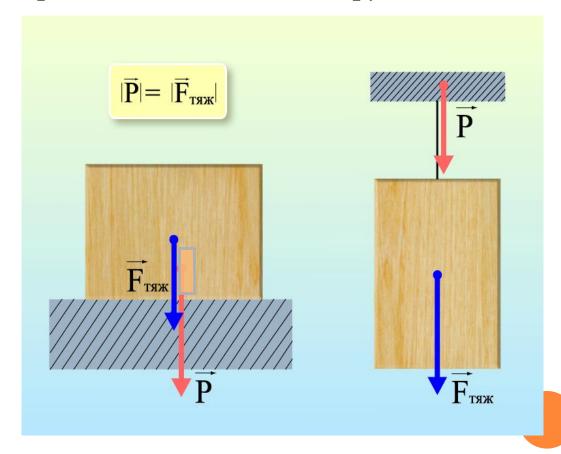
виды движения

- а) прямолинейное
- б) криволинейное (по параболе)
- в) по окружности (эллипсу)

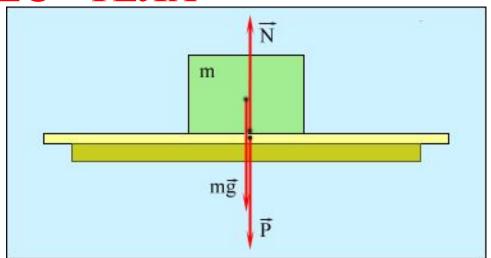
вес тела

Вес тела – сила, с которой тело давит на опору или

растягивает


нить подвеса.

Вес тела


приложен

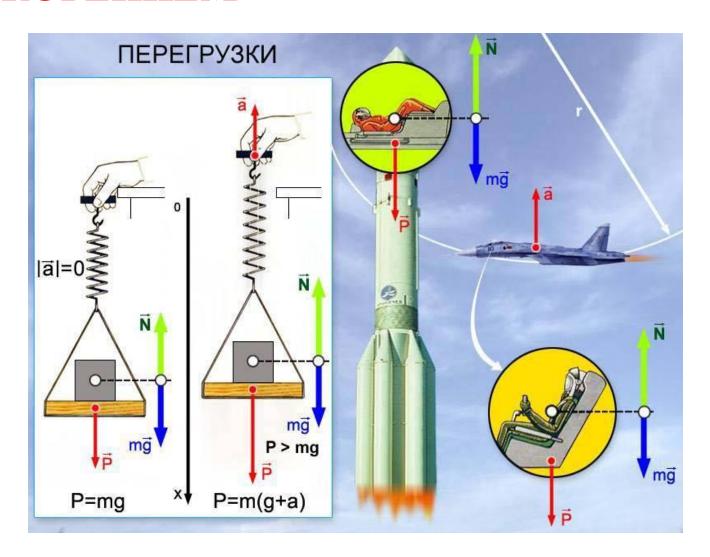
к опоре

(подвесу).

ВЕС ТЕЛА

$$P = -N$$

N — сила реакции опоры или сила нормального давления (направлена перпендикулярно поверхности)

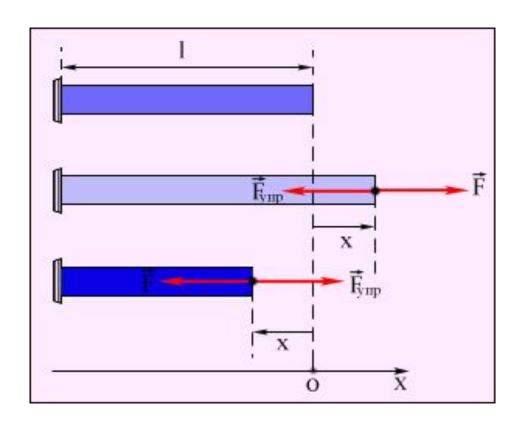

ВЕС ТЕЛА, ДВИЖУЩЕГОСЯ С УСКОРЕНИЕМ

□ При движении тела вдоль вертикальной линии с ускорением вес тела может изменяться

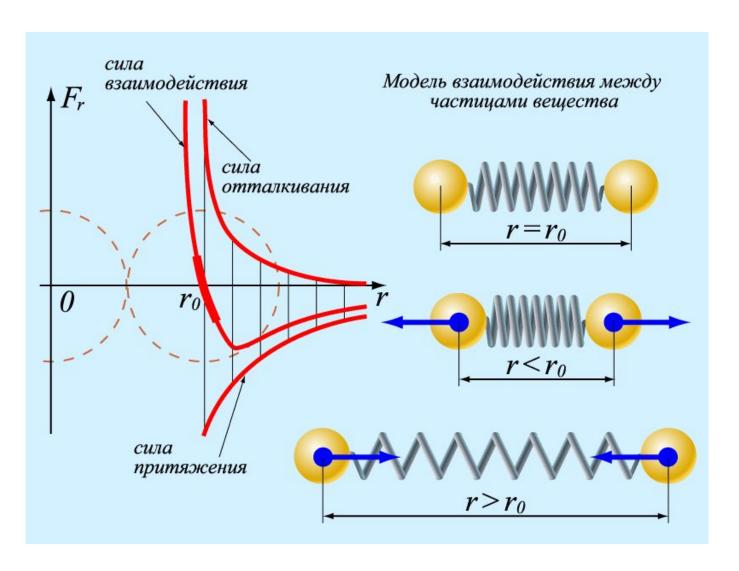
$$a = 0$$
 $a \uparrow (вверх)$ $a \downarrow (вниз)$ $P = mg$ $P = m(g + a)$ $P = m(g - a)$

<u>Невесомость</u> – *состояние тела, при котором вес равен нулю*

ВЕС ТЕЛА, ДВИЖУЩЕГОСЯ С УСКОРЕНИЕМ



СИЛА УПРУГОСТИ


При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости

СИЛА УПРУГОСТИ

□ Простейшим видом деформации является деформация растяжения или сжатия

КАК ВОЗНИКАЕТ СИЛА УПРУГОСТИ

ЗАКОН ГУКА

– сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации:

$$F = -kx$$

- k коэффициент жесткости (Н/м), зависит от материала пружины и геометрических размеров
- x yдлинение тела (м) $x = \ell_2 \ell_1$

ОСОБЕННОСТИ СИЛ УПРУГОСТИ

- 1) Возникают одновременно у двух тел
- 2) направлены перпендикулярно поверхности
- 🛮 3) противоположны смещению

СРАВНЕНИЕ СИЛ

	Сила тяжести	Сила упругости	Вес тела
Природа сил	Гравитацион-	Электоро-	Электоро-
	ная	магнитная	магнитная
Направление	К центру Земли	Против деформации	Различно
Точка	Центр масс	Точки контакта с	Опора или
приложения	тела	внешней силой	подвес
Зависит от	массы тела и	механических	массы тела,
	высоты над	свойств тела и	ускорения,
	поверхностью	деформации	внешней среды
Формула	F = mg	F = kx	$P = m(g\pm a)$

ЗАДАНИЯ!

1. Масса листика, сорвавшегося с березы, - 0,1 г, а масса кота Яшки, размечтавшегося о птичках и сорвавшегося с той же самой березы, 10 кг. Во сколько раз сила тяжести, действующая на планирующий листик, меньше силы тяжести, действующей на планирующего кота?

Ответ: в 10000 раз. Во столько же раз, во сколько масса листика меньше массы кота. Птички считают, что это справедливо.

2. Как, не понимая ни бельмеса в физике, все-таки научиться вычислять действующую на тебя силу тяжести?

Ответ: не снимая ботинок и не вынимая из карманов гайки и гвозди, встань на весы. Помотри, сколько килограммов весы показывают - это твоя масса. Не вес, а масса. Запомни, не BEC, а MACCA! Запомнил? Теперь быстро умножай свою массу

на девять и восемь десятых. Только не спрашивай, зачем. Так надо! Умножил? Теперь припиши к тому что получилось буковку "н" и можешь хвастаться, что на тебя действует сила тяжести в столько-то ньютонов.

- 3. Массы голубого большого воздушного шарика и мелкого ржавого железного гвоздика, который мечтает этот шарик когда-нибудь проткнуть, одинаковы. Как отличаются силы тяжести, действующие на шарик и гвоздик?
- Ответ: никак не отличаются. Один голубой и воздушный, другой мелкий и ржавый. Ну и что? Массы у них одинаковы? Одинаковы! Значит одинаковы и действующие на обоих силы тяжести.
- 4. Перестала ли действовать сила тяжести на Вовочку, который уже долетел с крыши сарая до поверхности планеты Земля?
- Ответ: нет, не перестала. Хотя Вовочка и кричит, что лежачих не бьют.

Спасибо за внимание!