Операционные системы

Машечкин Игорь Валерьевич

профессор, заведующий кафедрой Интеллектуальных Информационных Технологий

Терехин Андрей Николаевич

доцент, ученый секретарь кафедры

Интеллектуальных Информационных Технологий

Операционные системы Введение

- 1. Развитие вычислительной техники
- 2. Основы архитектуры вычислительной системы

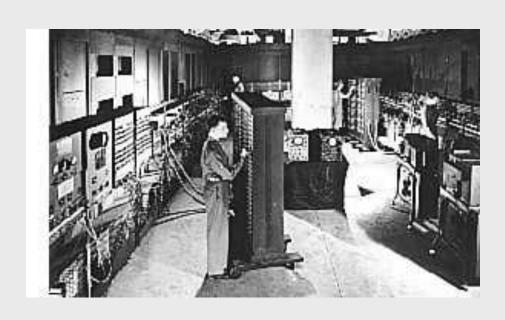
Первое	поколение	компьютеров

Элементная база	электронно-вакуумные лампы
Временной период	середина1940-х – вторая половина 1950-х
	годов

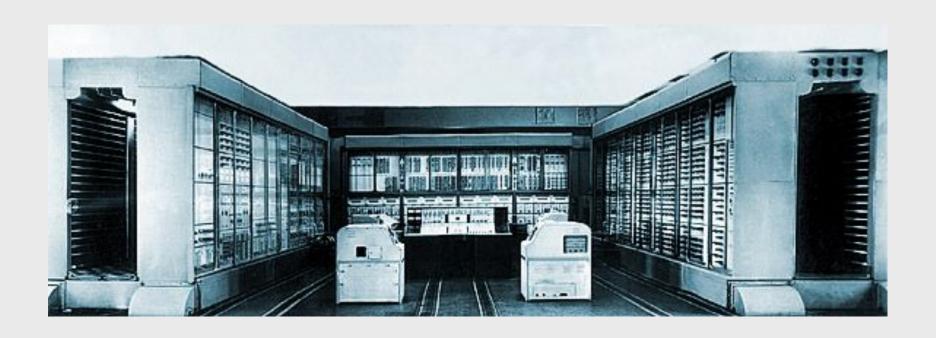
Середина 40-х годов - Пенсильванском университете США была разработана вычислительная машина ENIAC (Electronic Numerical Integrator and Computer), которая считается одной из первых электронных вычислительных машин — ЭВМ.

Особенности

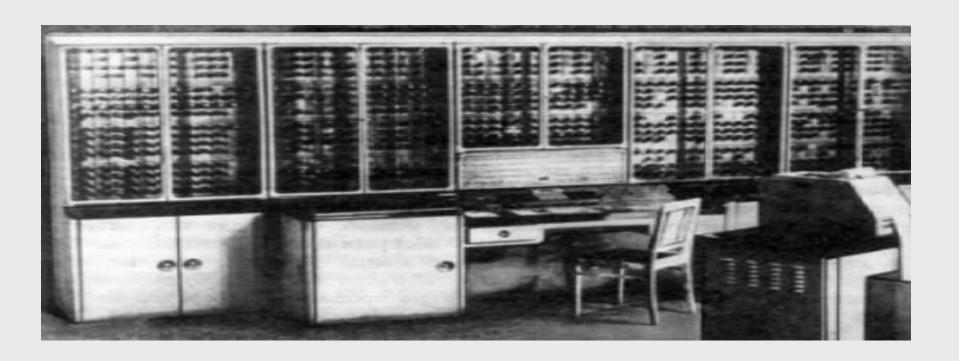
- однопользовательский, персональный режим
- зарождение класса сервисных, управляющих программ
- зарождение языков программирования


Приоритетное направление: военные задачи

Элементная база



ЭНИАК: ~ 20 тыс. электронных ламп, ежемесячно заменялось 2000 ламп



«Стрела»: быстродействие: 2000 трехадресных команд в секунду, основной такт — 500 мкс

«Урал-1»

Второе поколение компьютеров

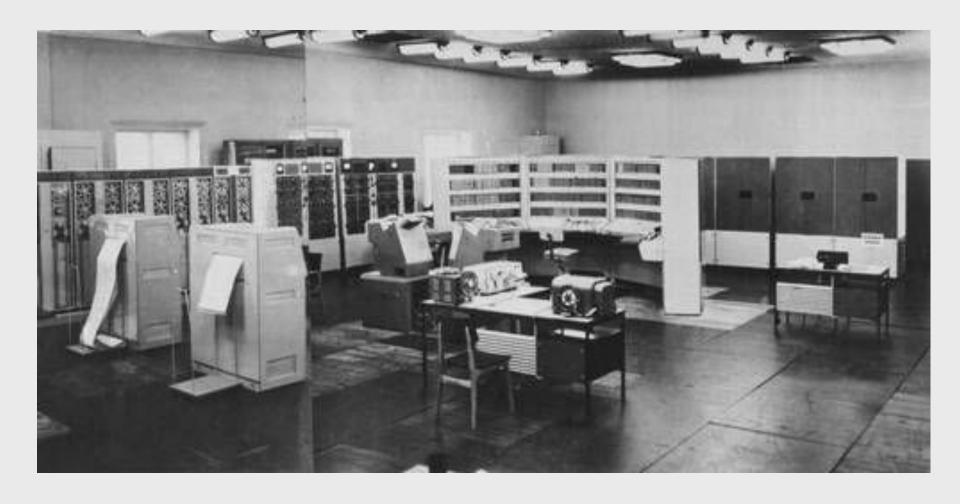
Элементная база	полупроводниковые приборы:	
	диоды и транзисторы	
Временной период	вторая половина 1950-х – вторая	
	половина 1960-х годов	

Особенности

- пакетная обработка заданий
- мультипрограммирование
- языки управления заданиями
- файловые системы
- виртуальные устройства
- операционные системы

Приоритетное направление: управление бизнес-процессами

Второе поколение компьютеров


Элементная база

Второе поколение компьютеров

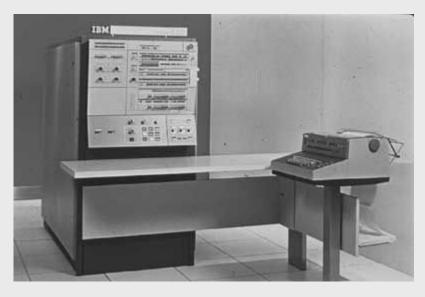
БЭСМ-6

Третье поколение компьютеров

Элементная база	интегральные схемы
Временной период	конец 1960-х – начало 1970-х годов

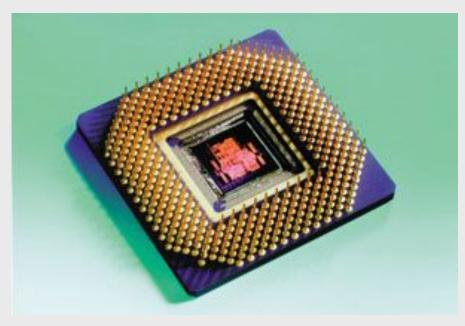
Особенности

- аппаратная унификация узлов и устройств
- создание семейств компьютеров
- унификация компонентов программного обеспечения


Третье поколение компьютеров

Элементная база

Третье поколение компьютеров IBM-360



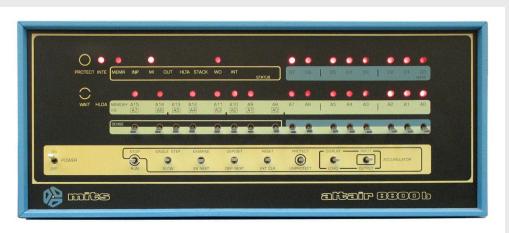
Элементная база	большие и сверхбольшие	
	интегральные схемы	
Временной период	начало 1970-х – настоящее время	

Особенности

- «дружественность» пользовательских интерфейсов
- сетевые технологии
- безопасность хранения и передачи данных

Элементная база

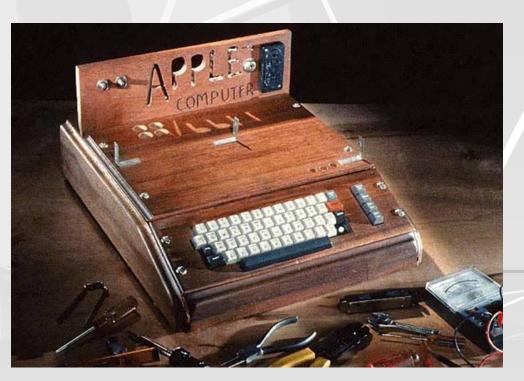
Первый микропроцессор Intel-4004 (1971г.) - 2250 элементов.


Первый универсальный микропроцессор Intel-8080 (1974г.) - 4500 элементов (основа для создания первых ПК).

16-битный микропроцессор Motorolla-68000 (1979 г.) - 70 000 элементов.

Первый 32-битный микропроцессор Hewlett Packard (1981 г.) - 450 тыс. элементов.

Altair-8800 (1974г.)



На базе микропроцессора Intel-8080 (1974г.). Программы вводились переключением тумблеров на передней панели, а результаты считывались со светодиодных индикаторов.

Объем памяти – 256 байт

Пол Аллен и Бил Гейтс (Micro-soft) (1975г.) создали интерпретатор языка Basic (4кб)

Четвёртое поколение компьютеров Apple 1 (1976г.)

Стив Джобс и Стив Возняк Apple 1: 4 Кбайт RAM, 8-разрядный микропроцессор MOS 6502 1 МГц

Osborne I : один из первых ноутбуков (1980)

Восьмиразрядный процессор Zilog Z80A. Объем оперативной памяти составлял 64 Кбайта; Два пятидюймовых дисковода и модем.

Основы архитектуры вычислительной системы

Вычислительная система — совокупность аппаратных и программных средств, функционирующих в единой системе и предназначенных для решения задач определенного класса.

Структура вычислительной системы:

Прикладные системы

Системы программирования

Управление логическими ресурсами

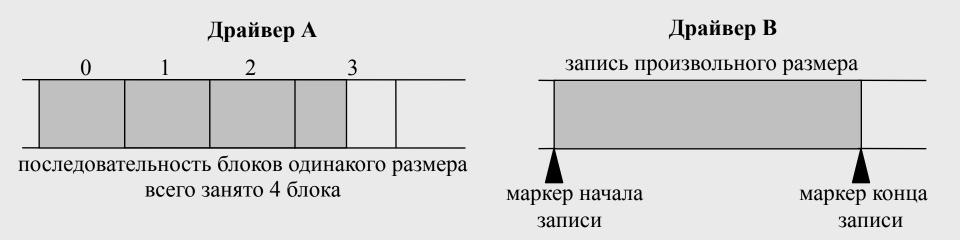
Управление физическими ресурсами

Аппаратные средства ЭВМ

Аппаратный уровень вычислительной системы

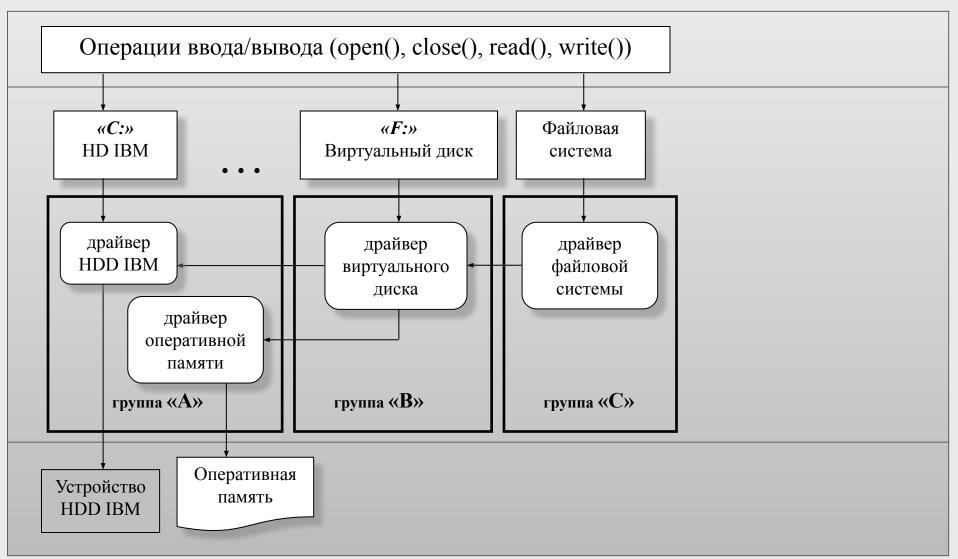
Характеристики физических ресурсов (устройств)

- правила программного использования
- производительность и/или емкость
- степень занятости или используемости


Средства программирования, доступные на аппаратном уровне

- система команд компьютера
- аппаратные интерфейсы программного взаимодействия с физическими ресурсами

Управление физическими ресурсами вычислительной системы


систематизация и стандартизация правил программного использования физических ресурсов (уровень драйверов физических устройств)

Драйвер физического устройства — программа, основанная на использовании команд управления конкретного физического устройства и предназначенная для организации работы с данным устройством.

Логическое (виртуальное) устройство (ресурс) — устройство (ресурс), некоторые эксплуатационные характеристики которого (возможно все) реализованы программным образом.

Драйвер логического (виртуального) ресурса — программа, обеспечивающая существование и использование соответствующего ресурса.

Характеристики ресурсов вычислительной системы

Ресурсы вычислительной системы — совокупность всех физических и виртуальных ресурсов.

Одной из характеристик ресурсов вычислительной системы является их **конечность** - возможна конкуренция за обладание ресурсом между его программными потребителями.

Операционная система — это комплекс программ, обеспечивающий управление ресурсами вычислительной системы.

Средства программирования, доступные на уровнях управления ресурсами ВС

- система команд компьютера
- программные интерфейсы драйверов устройств (как физических, так и виртуальных)

Системы программирования

Система программирования — это комплекс программ, обеспечивающий поддержание жизненного цикла программы в вычислительной системе.

Жизненный цикл программы в вычислительной системе

- 1. Проектирование
- 2. Кодирование
- 3. Тестирование и отладка
- 4. Ввод программной системы в эксплуатацию (внедрение) и сопровождение

Системы программирования: история

Начало 50-х годов XX века	Система программирования или система автоматизации программирования включала в себя ассемблер (или автокод) и загрузчик, появление библиотек стандартных программ и макрогенераторов.
Середина 50-х – начало 60-х годов XX века	Появление и распространение языков программирования высокого уровня (Фортран, Алгол-60, Кобол и др.). Формирование концепций модульного программирования.
Середина 60-х годов – начало 90-х XX века	Развитие интерактивных и персональных систем, появление и развитие языков объектно-ориентированного программирования.
90-е XX века – настоящее время	Появление промышленных средств автоматизации проектирования программного обеспечения, CASE-средств (Computer-Aided Software/System Engineering), унифицированного языка моделирования UML.

Системы программирования

Система программирования — это комплекс программ, обеспечивающий технологию автоматизации проектирования, кодирования, тестирования, отладки и сопровождения программного обеспечения.

Средства программирования, доступные на уровне системы программирования

•программные средства и компоненты системы программирования, обеспечивающие поддержание жизненного цикла программы.

Прикладные системы

Прикладная система — программная система, ориентированная на решение или автоматизацию решения задач из конкретной предметной области.

Выводы

Пользователь и уровни структурной организации ВС

Прикладные системы	+ набор функциональных средств прикладной системы.
Системы программирования	+ трансляторы языков высокого уровня, библиотеки
Управление логическими (виртуальными) устройствами	+ интерфейсы драйверов виртуальных устройств.
Управление физическими устройствами	+ интерфейсы драйверов физических ресурсов
Аппаратные средства	Система команд, аппаратные интерфейсы программного управления физическими устройствами

Выводы

Базовые определения и понятия:

- •Вычислительная система
- •Физические ресурсы (устройства)
- •Драйвер физического устройства
- •Логические или виртуальные ресурсы (устройства)
- •Драйвер логического (виртуального) ресурса
- •Ресурсы вычислительной системы
- •Операционная система
- •Жизненный цикл программы в вычислительной системе
- •Система программирования
- •Прикладная система