22.04.20.

Тема:

Двугранный угол. Перпендикулярность плоскостей.

Учащиеся должны прислать ответы на вопросы и решение задач, содержащиеся в практической части.

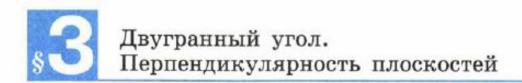
Видео для усвоения материала:

https://infourok.ru/videouroki/1428 https://infourok.ru/videouroki/1430 https://infourok.ru/videouroki/1429

Теоретическая часть:

Прочитать.

Теоремы и определения (выделенное жирным шрифтом) – выучить.

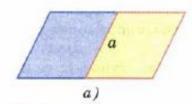


22 Двугранный угол

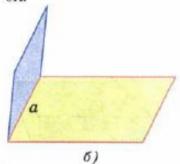
Углом на плоскости мы называем фигуру, образованную двумя лучами, исходящими из одной точки. В стереометрии наряду с такими углами рассматривается еще один вид углов — двугранные углы. Чтобы ввести понятие двугранного угла, напомним, что любая прямая, проведенная в данной плоскости, разделяет эту плоскость на две полуплоскости (рис. 58, а). Представим себе, что мы перегнули плоскость по прямой а так, что две полуплоскости с границей а оказались уже не лежащими в одной плоскости (рис. 58, б). Полученная фигура и есть двугранный угол.

Таким образом, можно дать такое определение двугранного угла: двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей а, не принадлежащими одной плоскости. Полуплоскости, образующие двугранный угол, называются его гранями. У двугранного угла две грани, отсюда и название — двугранный угол. Прямая а — общая граница полуплоскостей — называется ребром двугранного угла.

Двугранный угол с ребром AB, на разных гранях которого отмечены точки C и D, называют двугранным углом CABD.



Прямая *а* разделяет плоскость на две полуплоско-



Двугранный угол

Рис. 58

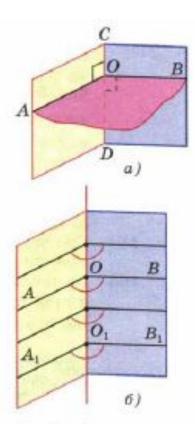
В обыденной жизни мы часто встречаемся с предметами, имеющими форму двугранного угла. Такими предметами являются двускатные крыши зданий, полураскрытая папка, стена комнаты совместно с полом и т. д.

Мы знаем, что углы на плоскости (обычные углы) измеряются в градусах. А как измеряются двугранные углы? Это делается следующим образом. Отметим на ребре двугранного угла какую-нибудь точку и в каждой грани из этой точки проведем луч перпендикулярно к ребру. Образованный этими лучами угол называется линейным углом двугранного угла. На рисунке 59, a угол AOB — линейный угол двугранного угла с ребром CD. Так как $OA \perp CD$ и $OB \perp CD$, то плоскость AOB перпендикулярна к прямой CD. Таким образом, плоскость линейного угла перпендикулярна к ребру двугранного угла. Очевидно, двугранный угол имеет бесконечное множество линейных углов (рис. 59, δ).

Докажем, что все линейные углы двугранного угла равны друг другу. Рассмотрим два линейных угла AOB и $A_1O_1B_1$ (см. рис. 59, δ). Лучи OA и O_1A_1 лежат в одной грани и перпендикулярны к прямой OO_1 , поэтому они сонаправлены. Точно так же сонаправлены лучи OB и O_1B_1 . Поэтому $\angle A_1O_1B_1 = \angle AOB$ (как углы с сонаправлеными сторонами).

Градусной мерой двугранного угла называется градусная мера его линейного угла. На рисунке 60, а градусная мера двугранного угла равна 45°. Обычно говорят коротко: «Двугранный угол равен 45°».

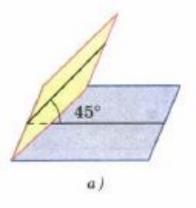
Двугранный угол называется прямым (острым, тупым), если он равен 90° (меньше 90° , больше 90°). Двугранный угол, изображенный на рисунке 60, δ , прямой, на рисунке 60, a — острый, а на рисунке 60, b — тупой.

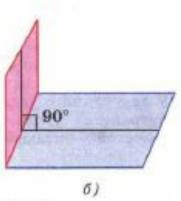


Линейный угол двугранного угла

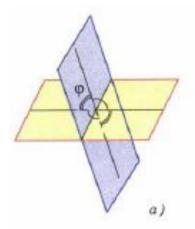
110°

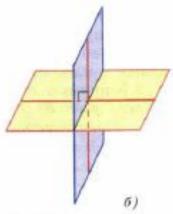
Puc. 59





6) Puc. 60





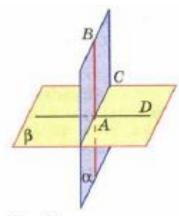


Рис. 61

Рис. 62

23 Признак перпендикулярности двух плоскостей

Две пересекающиеся плоскости образуют четыре двугранных угла с общим ребром (рис. 61, а). Если один из этих двугранных углов равен ф, то другие три угла равны соответственно 180° - ф, ф и 180° - ф. В частности, если один из углов прямой (φ = 90°), то и остальные три угла прямые. Если ф — тот из четырех углов, который не превосходит каждого из остальных, то говорят, что угол между пересекающимися плоскостями равен ф. Очевидно, 0° < ф ≤ 90°.

Определение

Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 90° (рис. 61, б).

Примером взаимно перпендикулярных плоскостей служат плоскости стены и пола комнаты. Ясно, что все четыре двугранных угла, образованные взаимно перпендикулярными плоскостями, прямые.

Рассмотрим признак перпендикулярности двух плоскостей.

Теорема

Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.

Доказательство

Рассмотрим плоскости α и β такие, что плоскость а проходит через прямую АВ, перпендикулярную к плоскости в и пересекающуюся с ней в точке A (рис. 62). Докажем, что $\alpha \perp \beta$. Плоскости α и β пересекаются по некоторой прямой AC, причем $AB \perp AC$, так как по условию $AB \perp \beta$, т. е. прямая AB перпендикулярна к любой прямой, лежащей в плоскости β .

Проведем в плоскости β прямую AD, перпендикулярную к прямой AC. Тогда угол BAD — линейный угол двугранного угла, образованного при пересечении плоскостей α и β . Но $\angle BAD = 90^{\circ}$ (так как $AB \perp \beta$). Следовательно, угол между плоскостями α и β равен 90° , т. е. $\alpha \perp \beta$. Теорема доказана.

Следствие

Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей (рис. 63).

24 Прямоугольный парадлеленинед

Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники. Форму прямоугольного параллелепипеда имеют многие предметы: коробки, ящики, комнаты и т. д. На рисунке 64 изображен прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Его основаниями служат прямоугольники ABCD и $A_1B_1C_1D_1$, а боковые ребра AA_1 , BB_1 , CC_1 и DD_1 перпендикулярны к основаниям. Отсюда следует, что $AA_1 \perp AB$, т. е. боковая грань AA_1B_1B — прямоугольник. То же самое можно сказать и об остальных боковых гранях. Таким образом, мы обосновали следующее свойство прямоугольного параллелепипеда:

 В прямоугольном параллелепипеде все шесть граней — прямоугольники.

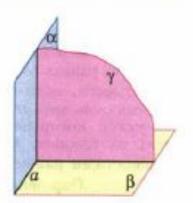
Полуплоскости, в которых расположены смежные грани параллелепипеда, образуют двугранные углы, которые называются двугранными углами параллелепипеда.

Докажите самостоятельно, что:

2°. Все двугранные углы прямоугольного параллеленипеда — прямые.

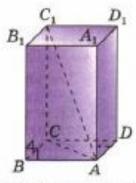
Теперь рассмотрим одно из самых замечательных свойств прямоугольного параллелепипеда.

Длины трех ребер, имеющих общую вершину, назовем измерениями прямоугольного параллелепипеда. Например, у параллелепипеда, изображенного



Если $\gamma \perp a$, то $\gamma \perp \alpha$ и $\gamma \perp \beta$

Puc. 63



Прямоугольный параллелепипед

Рис. 64

на рисунке 64, в качестве измерений можно взять длины ребер AB, AD и AA_1 .

В обыденной практике, говоря о размерах комнаты, имеющей форму прямоугольного параллелепипеда, вместо слова «измерения» используют обычно слова «длина», «ширина» и «высота» комнаты. Ясно, что длина, ширина и высота комнаты — это и есть ее измерения.

Прежде чем сформулировать свойство параллелепипеда, связанное с его измерениями, вспомним, что в прямоугольнике квадрат диагонали равен

сумме квадратов смежных сторон.

Длины смежных сторон можно назвать измерениями прямоугольника, и поэтому квадрат диагонали прямоугольника равен сумме квадратов двух его измерений. Оказывается, аналогичным свойством обладает и прямоугольный параллелепипед.

Теорема

Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Доказательство

Обратимся к рисунку 64, на котором изображен параллелепипед $ABCDA_1B_1C_1D_1$, и докажем, что

$$AC_1^2 = AB^2 + AD^2 + AA_1^2$$
.

Так как ребро CC_1 перпендикулярно к основанию ABCD, то угол ACC_1 прямой. Из прямоугольного треугольника ACC_1 по теореме Пифагора получаем

$$AC_1^2 = AC^2 + CC_1^2$$
.

Но AC — диагональ прямоугольника ABCD, поэтому $AC^2=AB^2+AD^2$. Кроме того, $CC_1=AA_1$. Следовательно, $AC_1^2=AB^2+AD^2+AA_1^2$. Теорема доказана.

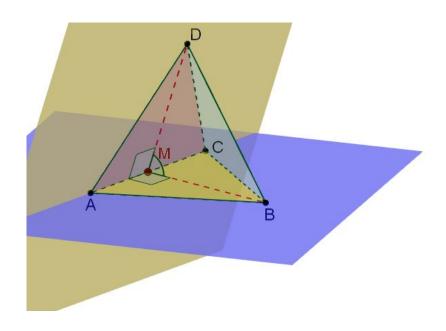
Следствие

Диагонали прямоугольного параллелепипеда равны.

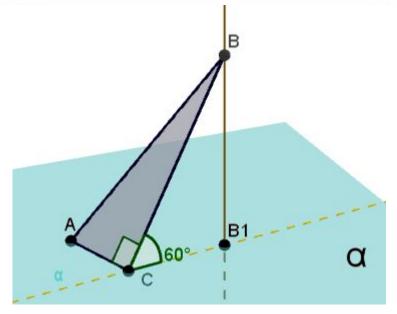
Прямоугольный параллелепипед, у которого все три измерения равны, называется кубом. Все грани куба — равные друг другу квадраты.

Практическая часть.

167 В тетраэдре DABC все ребра равны, точка M — середина ребра AC. Докажите, что $\angle DMB$ — линейный угол двугранного угла BACD.



172 Катет AC прямоугольного треугольника ABC с прямым углом C лежит в плоскости α , а угол между плоскостями α и ABC равен 60° . Найдите расстояние от точки B до плоскости α , если AC = 5 см, AB = 13 см.



195 Найдите измерения прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$, если $AC_1=12$ см и диагональ BD_1 составляет с плоскостью грани AA_1D_1D угол в 30°, а с ребром DD_1 — угол в 45°.

