ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ Нейрофизиология высших отделов ЦНС

Лекция 1. Основные понятия. История открытий. Функции отделов ЦНС. Кора, как основной субстрат ВНД.

ВОПРОСЫ

- 1. Термины связанные с ВНД
- 2. Научные дисциплины близкие к проблематике ВНД
- □ 3. История ВНД.
- 4. Кора, как субстрат ВНД.
 Кортиколизация.
- □ 5. Функции коры.
- 5.Морфофункциональная организация коры.

- Высшая нервная деятельность термин предложен Павловым, что бы отделить деятельность связанную с выработкой новых индивидуальных приспособительных форм поведения от врожденных (низших) рефлексов.
- Нейрофизиология раздел физиологии изучающий процессы, функции и свойства нервной системы.

Высшая нервная деятельность ДСЯТЕЛЬНОСТЬ ВЫСШИХ ОТДЕЛОВ центральной нервной системы животных человека, '... обеспечивающая нормальные сложные отношения целого организма к внешнему миру...' (Павлов И. П., Полн. собр. трудов, т. 3, 1949, с. 482).

Основа ВНД – условный рефлекс.

Синоним ВНД (по Павлову) – психическая деятельность.

Психическая деятельность Диалектическое единство поведения и ПСИХИКИ выражает ПОНЯТИС ПСИХИЧЕСКОЯ ДЕЯТЕЛЬНОСТЬ -Весь комплекс проявлений поведения единый ПСИХИКИ, процесс психического отражения как продукт внешней активности животного.

Психическая деятельность Диалектическое единство поведения и ПСИХИКИ выражает ПОНЯТИС ПСИХИЧЕСКОЯ ДЕЯТЕЛЬНОСТЬ — Весь комплекс проявлений поведения и психики, единый процесс психического отражения как продукт внешней активности животного.

Психика – функция животного организма, состоящая в отражении предметов и явлений окружающего мира в ходе и результате направленной на этот мира активности, т.е. поведения.

Поведение – вся совокупность проявлений внешней, преимущественно двигательной активности животного, направленная на установление жизненно необходимых связей организма с окружающей его средой.

- Рефлекс ответная реакция организма на раздражение рецептора при участии ЦНС.
- Нейрофизиология
 нервной системы) раздел физиологии изучающий процессы, функции и свойства нервной системы.
- ВНД раздел физиологии.

Смежные науки

- Нейробиология современная наука, изучает нервную систему вместе с более широком кругом дисциплин (физиологии, молекулярной биологии, биохимии, генетики, психологии).
- Психофизиология раздел психологии изучающий физиологические основы психической деятельности.

Смежные науки

- Нейропсихология наука о мозговой организации психических процессов и поведения.
- □ Психиатрия (лечение души) область клинической медицины, изучающая патологию психики.
 Неврология область клинической медицины, изучает нервную систему как в норме, так и в патологии.

Смежные науки

- □ Психология занимается изучением психической деятельности человека, процессов, свойств и состояний психики.
- Зоопсихология наука о психической деятельности животных, её проявлениях, происхождении и развитии.
- Этология изучающая генетически обусловленное поведение (инстинкты) животных в естественных условиях.

- □ Платон (437-347 гг. до н.э.) Основоположник идеалистического направления в философии.
- Душа (бессмертна), тело(смертно).
- Душа высшая, тело низшая субстанция.
- Душа состоит из трех частей:
- разумная;
- волевая;
- чувственная.

- Аристотель (384-322 гг. до н.э.) Создатель понятийного аппарата естественных наук.
 Автор трактата «О душе».
- 🗅 Душа и тело связаны (едины).
- Душа состоит из трех частей:
- **растительная** часть регулирует питание, рост, размножение;
- животная часть ведает простой чувствительностью, подвижностью, эмоциями;
- **человеческая** часть осуществляет мышление, т.е. Умственную деятельность.

- □ Клавдий Гален (129-199 гг. н.э.). Автор учения о смешении (темпераментах) жидкостей оргранизма, как основы характера и сложения человека.
- Осуществил перерезку спинного мозга, доказав невозможность без нервов осуществления движений и ощущений.
- Высказал догадку, что **душевная деятельность** осуществляется **головным мозгом** и, собственно, является его функцией.

История ВНД. Механистическая концепция рефлекса.

- □ Рене Декарт (1596–1650). Французский философ, математик. Описал модель живого организма, в виде механизма.
- Материальное тело (пассивная масса), способно зеркально отражать (reflexus, отраженный) внешние воздействия.
- Реакция является отражением внешнего воздействия на организм, аналогичным отражению света в физике.
- Дал описание механизма ответной реакции на раздражитель.

История ВНД. Механистическая концепция рефлекса.

Внешние воздействия на организм - в органах чувств вызывает движение "животных духов" - они передаются в мозг, где осознаются как психические процессы - оттуда идут к "мускулам", наполняя их и вызывая двигательный акт.

Постулировал раздельность разума (психическое) и тела (биологическое). Местом взаимодействия тела и души

Декарт считает **шишковидную железу**.

История ВНД. Биологическая концепция рефлекса.

Йиржи Прохазка (1749-1820). чешский анатом, физиолог и окулист. Ввел термин «рефлекс».

Постулировал, что **ответная рефлекторная реакция** всегда проявляется в размерах, соответствующих силе приложенного стимула.

Назначение рефлекса биологическое – самосохранение.

Телесная часть «общего чувствилища» локализуется в спинном мозге, а **душевная** - в головном.

История ВНД. Анатомическая концепция рефлекса.

Чарльз Белл (1774-1842 гг.) Франсуа Мажанди (1783-1855 гг.) независимо друг от друга обнаружили переход нервного возбуждения по афферентным нервам через спинной мозг на эфферентные нервы.

Это феномен получил название -

Закона Белла-Мажанди

Маршал Холл назвал путь состоящий из афферентного нерва, спинного мозга и эфферентного нерва - рефлекторной дугой.

История ВНД. Психофизиологическая концепция рефлекса.

Сеченов И.М. (1829 — 1905) В книге «Рефлексы головного мозга» привел доказательства рефлекторной природы психической деятельности. Разделил рефлексы на постоянные и изменчивые.

Постоянные, врожденные, осуществляемые низшими отделами нервной системы.

Изменчивые (рефлексы головного мозга), приобретенные в индивидуальной жизни.

Связывал рефлекторную деятельность не только с текущими, но со следами от предыдущих раздражений в ЦНС, а также от биологических потребностей организма.

История ВНД. Психофизиологическая концепция рефлекса.

Павлов И.П. - русский физиолог. Лауреат Нобелевской премии за открытие нервных механизмов регуляции в пищеварительной системе.

Автор учения о высшей нервной деятельности.

Разделил нервную деятельность на высшую и низшую.

Разработал методику выработки условного рефлекса

Автор учения об анализаторах, учения о первой и второй сигнальной систем.

Открыл природу формирования неврозов.

- Сеченов И.М. (1829 1905) В книге «Рефлексы головного мозга» привел доказательства рефлекторной природы психической деятельности. Разделил рефлексы на постоянные и изменчивые.
- Постоянные, врожденные, осуществляемые низшими отделами нервной системы.
- Рефлексы головного мозга изменчивые,
 приобретенные в индивидуальной жизни.
- Связывал рефлекторную деятельность не только с текущими, но со следами от предыдущих раздражений в ЦНС, а также от биологических потребностей организма.

Ступени цефализации

Кортикализация функций

- Контроль коры б.п. над ниже лежащими структурами и центрами функций.
- Чем выше организация ЦНС, тем больше кортикализация.

Теории локализации функций в головном мозге нцепция эквипотенциальности

- концепция эквипотенциальности (антилокализационизм): высшие психические функции не имеют локализации в мозге – они распределены по всему мозгу.
- локализационизм: каждая высшая психическая функция имеет строгую локализацию в мозге.
- динамической локализации:

возможность использования одних и тех же структур мозга для обеспечения разных функций.

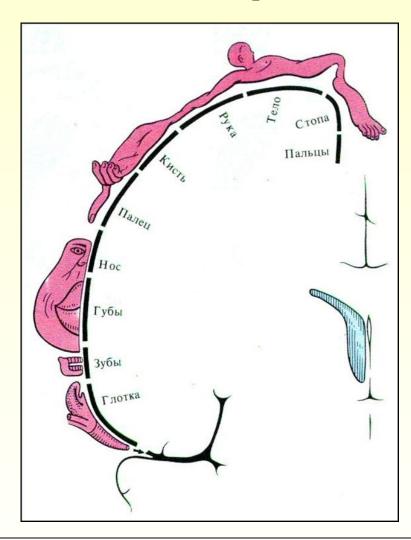
- Флуранс Мари Жан Пьер (1794—1867) —
 французский физиолог, врач и психолог.
 Выделил в нервной системе шесть отделов :
- 1. Доли головного мозга, отвечающие за восприятие, интеллект и волю.
- 2. Мозжечок, ответственный за координацию движений.
- 3. Продолговатый мозг, ответственный за хранение (интеграционный центр).
- 4. Четверохолмие, ответственное за зрение.
- 5. Спинной мозг, отвечающий за проведение.
- 6. Нервы, отвечающие за возбуждение.

Функции коры. Двигательная кора

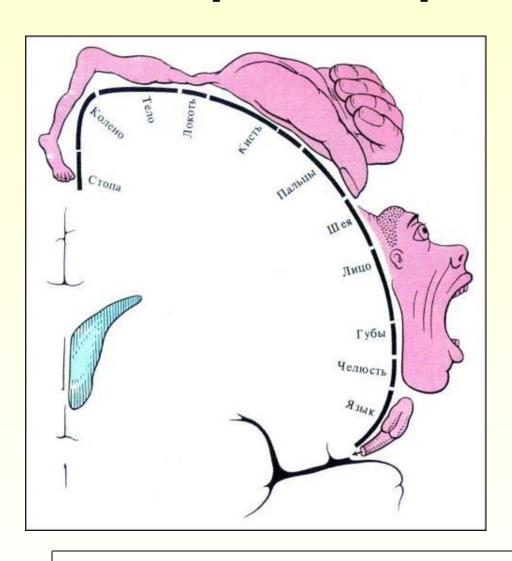
□ Открытие А. Фритчем и Э. Гитцигом в 1870 г. участков коры, раздражение которых в эксперименте на животных вызывало двигательный эффект, т. е. было подтверждено, что в коре большого мозга размещены двигательные центры.

Двигательная кора

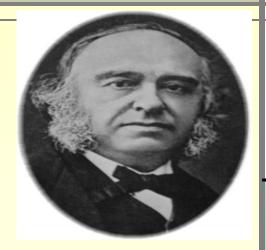
 В 1874 г. проф. В.М. Бец открыл в двигательной коре обезьяны и чело века особую группу гигантских пирамидных нейронов, которые образуют проводящие пути между моторной корой и спинным мозгом. Теперь эти гигантские клетки называют клетками Беца.


Сенсорная кора

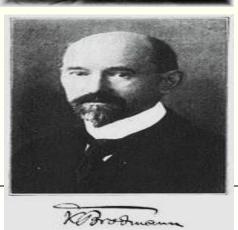
□ Г. Мунка, В.М. Бехтерева сообщили, что в коре большого мозга имеются не только двигательные центры, но и участки, связанные со зрением, слухом, обонянием, вкусом, общей чувствительностью кожи.


Топическая организация

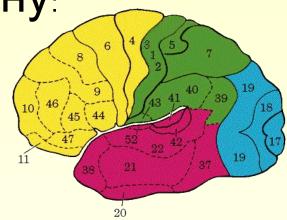
(1964).□ Пенфильд Основным функциональной принципом организации проекционных систем в коре является принцип топической локализации, которая основывается на четких анатомических связях между отдельными воспри нимающими элементами периферии и корковыми клетками проекционных зон.

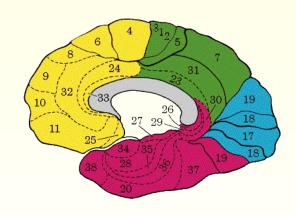

Соматосенсорная кора

Моторная кора

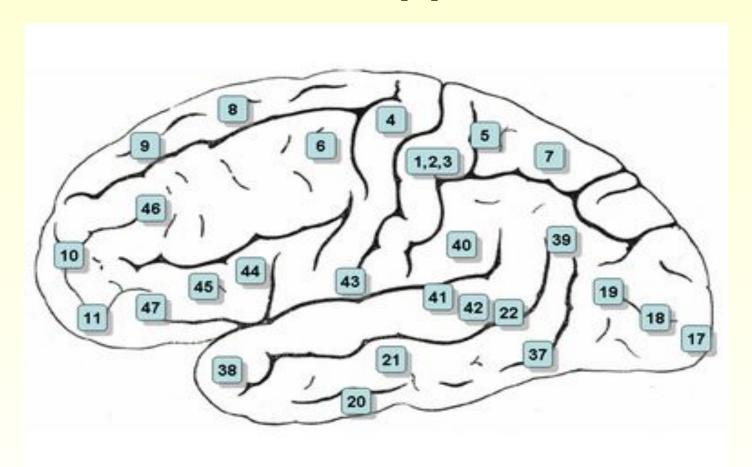

Поль Брока (1824-1880) - французский хирург, анатом. Обнаружил центр речи в головном мозге человека

Карл Вернике (1848-1905) - немецкий психоневролог описал сенсорную афазию

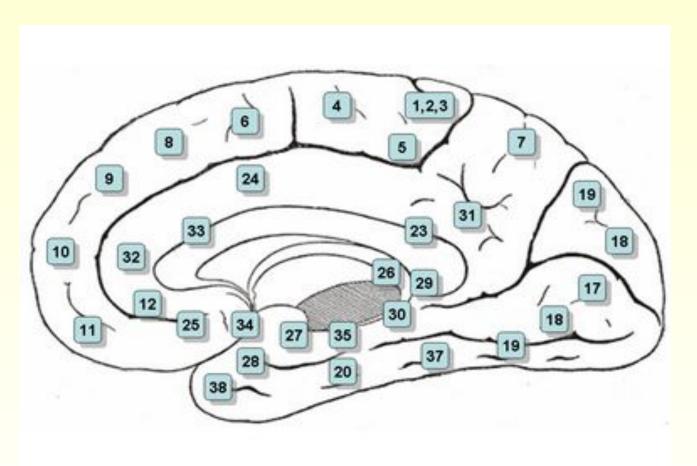

Корбиниан Бродман (1868-1918) - немецкий невролог один из основателей учения о цитоархитектонике

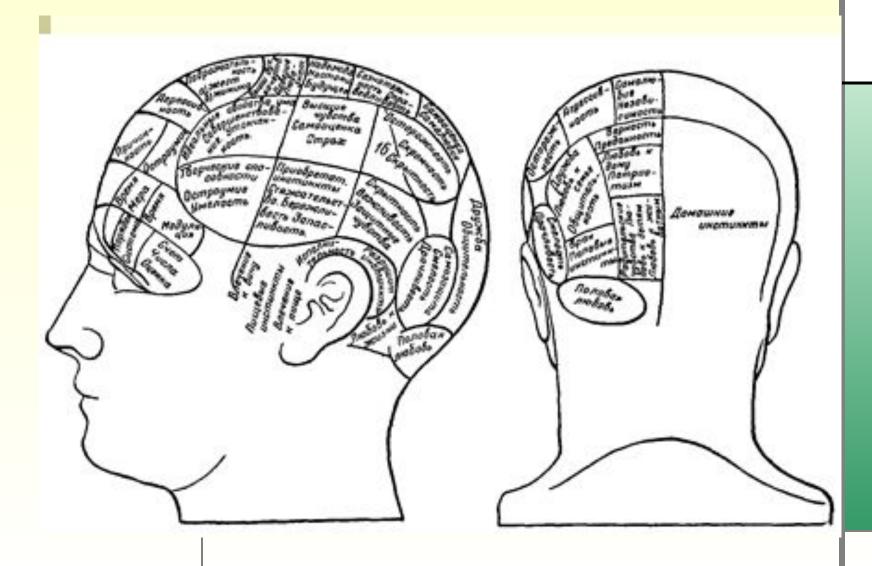


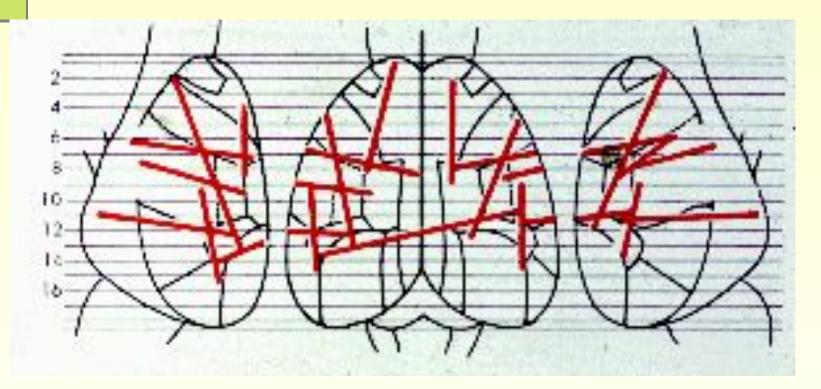
Области и поля коры больших полушарий по Бродману:


- 1) постцентр аль ная область (поля 1, 2, 3, 43);
- 2) прецентральная область (поля 4, 6)
- 3) лобная область (поля 8, 9, 10, 11, 12, 44, 45, 46, 47);
- 4) островковая область (поля 13, 14, 15, 16);
- 5) теменная область (поля 5, 7, 40, 39);
- 6)височная область (поля 20, 21, 22, 36, 37, 38, 41, 42, 52);
- 7) затылочная область (поля 17, 18, 19);
- 8) поясная область (поля 23, 31, 24, 32, 33, 25);
- 9) ретросплениальная область (поля 26, 29, 30);
- 10) гиппокампова область (поля 27, 28, 34, 35, 48)
- 11) обонятельная область

(поле 51, nucl. amygdalae, tub erculum olfactorium).




ЦИТОАРХИТЕКТОНИЧЕСКИЕ ПОЛЯ БРОДМАНА


ЦИТОАРХИТЕКТОНИЧЕСКИЕ ПОЛЯ БРОДМАНА

Френологические карты

Эквипотенциальность

К. Лешли установил (1929), что степень способности крыс к решению сложных определяется не локализацией повреждения головного мозга, а объемом этого повреждения.

Ассоциативные области коры

Функция АО связана с процессами **«познания»** окружающего мира и что надо делать, чтобы в нем адаптироваться.

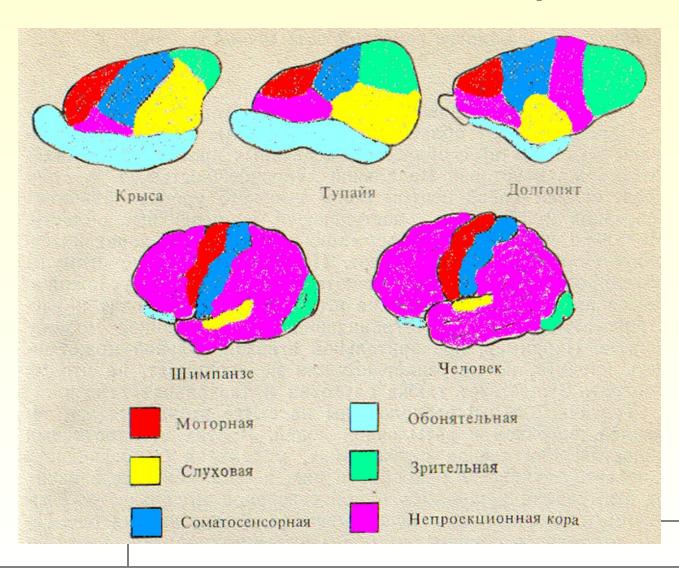
Такое ((познание)) заключается в

- 1) привлечении внимания к внешним стимулам и внутренним мотивациям (детерминантам поведения),
 - 2) оценке их значимости
 - 3) и осуществлении адекватного ответа.

АО получает и интегрирует информацию от многих источников и, в свою очередь, влияет на многочисленные части мозга (другие области коры и подкорку).

Ассоциативные области коры

Теменная связана со вниманием и перцептивной компетенцией

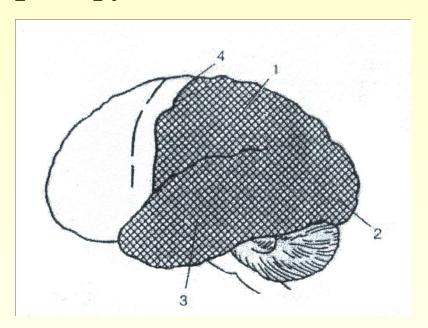

Височная обеспечивает распознавание и идентификацию объектов, в частности, сложных стимулов.

Лобная интегрирует информацию от сенсорных и моторных систем, а также от других функциональных отделов АО (теменной и височной).

На основе этой обработки происходит планирование и выполнение адекватного

поведенческого ответа

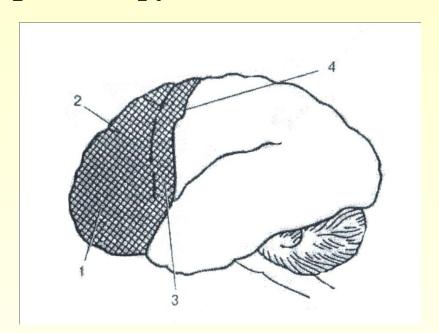
Соотношение проекционных и ассоциативных зон в коре



- Моторная кора
- Сенсорная кора
- Ассоциативная кора

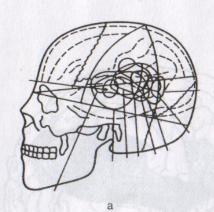
- Проекционные зоны
- Ассоциативные зоны

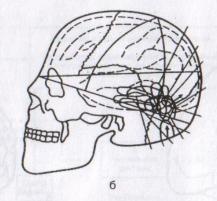
- Посиз (задние отделы)
- Праксис (передние отделы)

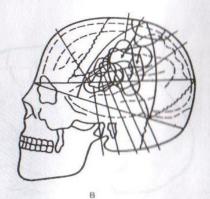

Второй функциональный блок

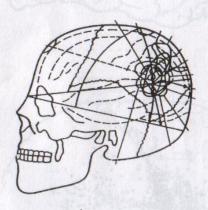
Второй блок приёма, переработки и хранения экстероцептивной информации, включающий основные анализаторные системы (зрительную, кожно-кинестетическую, слуховую), корковые зоны которых расположены в задних отделах больших полушарий:

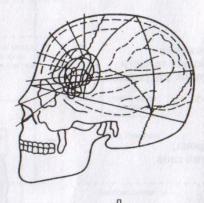
- 1 теменная область (обще-чувствительная кора)
- 2 затылочная область (зрительная кора)
- 3 височная область (слуховая кора)
- 4 + центральная борозда

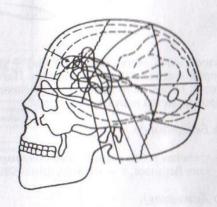

Третий функциональный блок



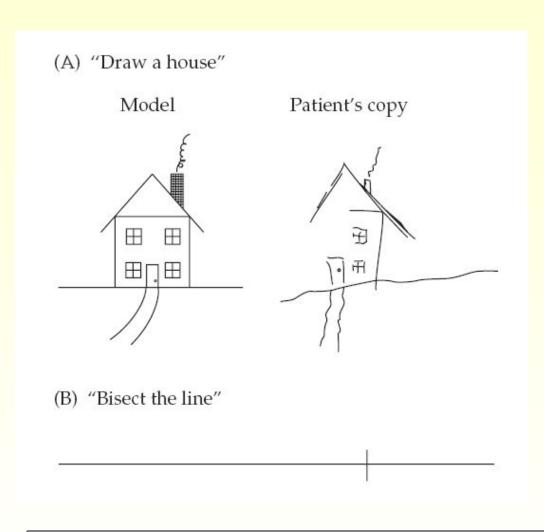

Третий блок программирования, регуляции и контроля за протеканием психической деятельности, включающий моторные, премоторные и префронтальные отделы мозга с их двусторонними связями:

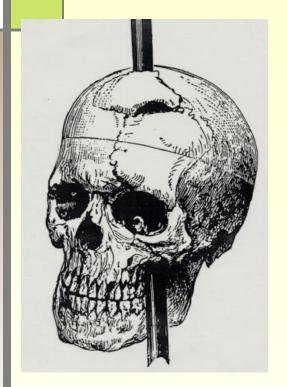

- 1 префронтальная область
- 2 премоторная область
- 3 моторная область (прецентральная извилине)
- 4 центральная борозда


Расположение очагов поражения левого полушария мозга при различных формах афазии



а — при сенсорной афазии,


б - при акустико-мнестической афазии,


в — при афферентной моторной афазии, г — при «семантической» афазии,

д — при динамической афазии, е — при эфферентной моторной афазии.

(по Лурия)

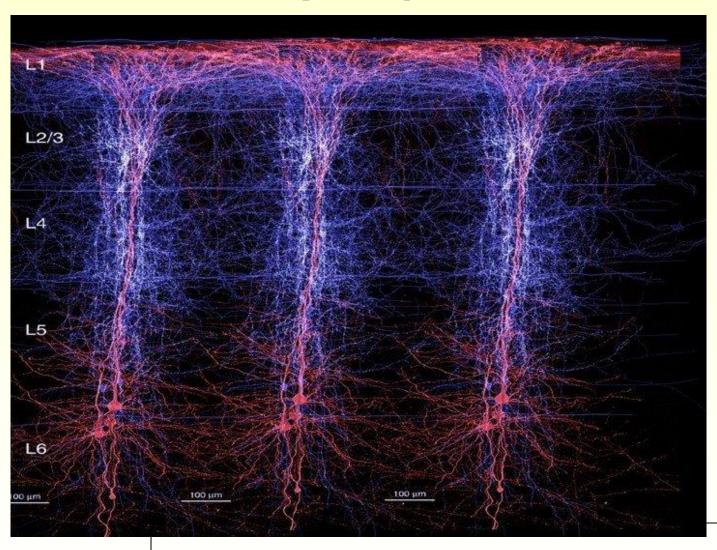
Сенсорная афазия

Финеас Гейдж. До несчастного случая он был тактичным и уравновешенным человеком, хорошим работником;

После стал невыдержанным и непочтительным, часто позволял себе грубую брань и мало считался с другими людьми.

КОРА БОЛЬШИХ ПОЛУШАРИЙ

Это тонкий слой нервной ткани, образующий много складок и покрывающий как плащ головной мозг


Цитоархитектонические признаки строения коры - плотность, расположение и форма нейронов

Кора состоит из 6 слоев (изокортекс или неокортекс – новая кора)

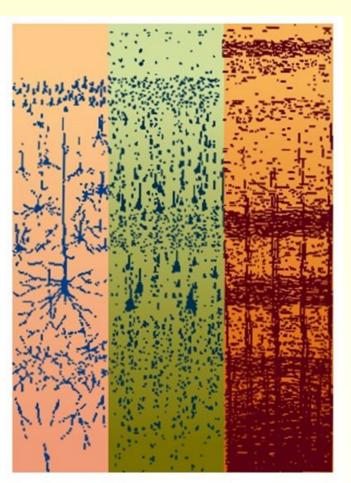
Шесть слоёв коры больших полушарий

- □ I Молекулярный (плексиформный)
- II Наружный зернистый
- □ III Наружный пирамидный
- □ IV Внутренний зернистый
- □ V -Внутренний пирамидный
- VI Слой веретеновидных (фузиформных) клеток

Шесть слоёв коры больших полушарий

Шесть слоёв коры больших полушарий

Молекулярный слой


Наружный зернистый слой

Наружный пирамидный слой

Внутренний зернистый слой

Внутренний пирамидный слой

Полиморфный слой

Слои коры больших полушарий

- 1 слой ветвления дендритов пирамидных нейронов, горизонтальные нейроны и клетки-зерна, волокна неспецифических ядер таламуса
 - 2 слой звездчатые клетки, пути реализующие циркуляцию импульсов, волокна неспецифических ядер таламуса
- З слой малые пирамидные клетки и корковокорковые связи различных извилин коры
 - 4 слой звездчатые клетки, окончание специфических галамокортикальных путей
 - 5 слой крупные пирамидные клетки Беца выходные нейроны кортико мозговых путей
 - 6 слой кортикоталамические пути

□ Павлов И.П. Указывал, что кора представляет собой комплекс центральных концов отдельных экстеро-, проприо-, интероцептивных анализаторов, которые получают сигналы из внешнего мира, от собственных мышц и из внутренней среды организма, подвергают ИХ тщательному анализу

Функциональной единицей коры является поле – участок, включающий все слои и отвечающий за определенную функцию. Внутри полей более мелкие функционирующие модули - колонки участки коры шириной не более 1 мм и включающие нейроны всех слоев. Каждую такую колонку питает отдельный СОСУД.

Морфофункциональная организация коры. Колонки.

Маунткасл на первичной зрительной коре с помощью микроэлектродов показал, что если микроэлектрод погружается в кору перпендикулярно, то на своем пути он встречает нейроны, реагирующие только на один вид раздражения.

Морфофункциональная организация коры. Колонки.

Хьюбел и Визел обнаружили, что зрительные центры коры головного мозга организованы в виде периодических вертикальных комплексов, которые они назвали доминирующими зрительными столбиками столбиками ориентации (глазодоминатные ориентационные колонки).

Морфофункциональная организация коры. Колонки.

Функциональная единица коры - вертикальная колонка диаметром около 500 мкм — макромодуль.

Колонка - зона распределения разветвлений одного восходящего афферентного таламокортикального волокна.

Каждая колонка содержит до 1000 нейронных ансамблей – микромодули.

Возбуждение одной колонки тормозит соседние колонки.

СВЯЗИ НЕОКОРТЕКСА

Эфферентные или кортикофугальные	Афферентные или кортикопетальные
Проекционные волокна к подкорковым образованиям (мост, таламус, красное ядро, спинной мозг)	Таламокортикальные волокна. Несут все виды чувствительности кроме обонятельной. Импульсы от РФ
Ассоциативные волокна идущие к соседним и отдаленным областям коры одного полушария (ипсилатеральные)	Ассоциативные
Комиссуральные волокна, соединяют одноименные области коры контралатеральных полушарий	Комиссуральные