
Диеновые углеводороды. Алкадиены.

План урока

- 1. Гомологический ряд алкадиенов.
- 2. Изомерия алкадиенов.
- 3. Строение алкадиенов.
- 4. Физические свойства алкадиенов.
- 5. Химические свойства алкадиенов.
- 6. Получение алкадиенов.
- 7. Применение алкадиенов.

Алкадиены

Алкадиены – непредельные углеводороды, молекулы которых помимо одинарных связей содержат две двойные C=C связи.

$$C_nH_{2n-2}$$

Гомологический ряд алкадиенов

1
 2 3 4 4 4 2 2 2 2 3 4

 CH_3

- 1. Структурная:
 - а) изомерия углеродного скелета
 - б) изомерия положения двойных связей.
- 2. Пространственная:
 - а)цис-транс изомерия
- 3. Межклассовая изомерия (алкины)

I. Структурная изомерия

1. Изомерия углеродного скелета (начиная с C_5H_8):

2-метилбутадиен-1,3 (изопрен)

2. Изомерия положения кратных связей (начиная с C₄H₆):

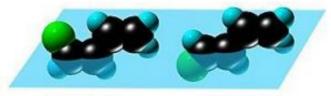
3. Межклассовая (с алкинами):

1
 2 3 4 5 $CH \equiv C-CH_{2}-CH_{2}-CH_{3}$ $\frac{1}{1}$ $\frac{1}{1}$

II. Пространственная изомерия

1. Геометрическая (цис-транс-изомерия) (= связь в середине молекулы):

$$H_2\overset{1}{C}=\overset{2}{C}H$$
 $\overset{5}{C}=\overset{5}{C}$
 $C=\overset{5}{C}$
 $C=\overset{5}{C}$
 $C=\overset{5}{C}$
 $C=\overset{5}{C}$


$$H_2\overset{1}{C}=\overset{2}{C}H$$
 H
 $\overset{3}{C}=\overset{4}{C}$
 $\overset{5}{C}H_3$

цис-пентадиен-1,3

транс-пентадиен-1,3

Пространственные изомеры диенов

$$\begin{array}{c|c} R & H & H & H \\ \hline R & C = C & H & H & C = C & H \\ \hline \end{array}$$

цис-изомер

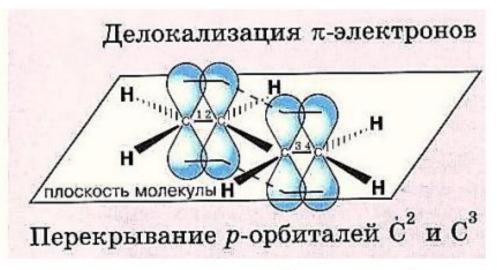
тране-изомер

Изомерия: 1. структурная

- 2. пространственная
- 3. положение кратной связи

$$H_2C = CH - CH_2 - CH = CH_2$$
 пентадиен-1,4 пентадиен-1,2 пентадиен-1,2 $H_2C = C - CH = CH_2$ пентадиен-1,3 (изопрен) CH_3 пентадиен-1,3 пентадиен-1,3 $H_2C - CH = CH - CH = CH_2$ пентадиен-1,3 пентадиен-1,3 $H_2C = CH$ CH_3 пентадиен-1,4 $H_3C = CH$ пе

$$H_2C = CH$$
 H $C = C$ транс-пентадиен-1,3


Строение алкадиенов

Сопряжение – образование в молекуле единого делокализованного электронного облака в результате перекрывания негибридных р-

орбиталей.

Тип гибридизации **sp**² Валентный угол **120**⁰ Длина С-С **0,146 нм** С=С **0,137 нм**

Строение – **плоскостное**

$$1 2 3 4$$
 $H_2C = CH = CH = CH_2$

Эффект сопряжения или мезомерный эффект

Строение алкадиенов

Изолированные двойные связи разделены двумя или более σ-связями:

$$CH_2 = CH - CH_2 - CH = CH_2$$

2. Кумулированные двойные связи расположены у одного атома углерода:

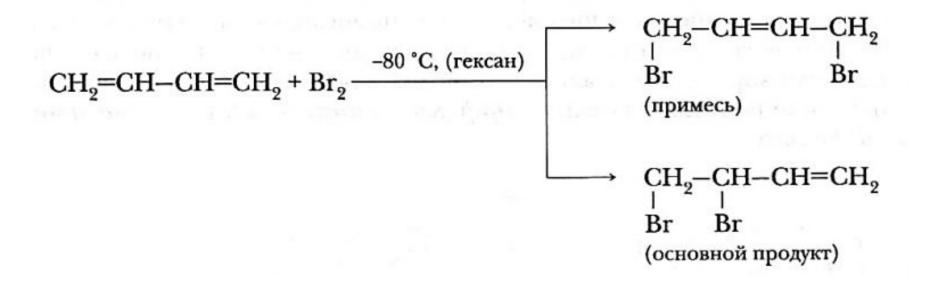
$$CH_2 = C = CH_2$$
 (аллен)

3. Сопряженные двойные связи разделены одной σ-связью:

$$CH_2 = CH - CH = CH_2$$

Дивинил или бутадиен-1,3 - легко сжижающийся газ, $t_{\text{кип}} = -5$ °C

Изопрен или *2-метилбутадиен-1,3* - жидкость с $t_{\text{кип}} = 34 \, ^{\circ}\text{C}$


1. Реакции присоединения.

 а) Галогенирование (зависит от температуры и от природы растворителя).

1,4-присоединение: 40°С, ССІ₄

$$\begin{array}{c} \text{CH}_2\text{=CH-CH=CH}_2 + \text{Br}_2 & \xrightarrow{40 \, ^{\circ}\text{C, (CCl}_4)} & \xrightarrow{\text{CH}_2\text{-CH=CH-CH}_2} \\ & \text{Br} & \text{Br} \\ & 1,4\text{-дибромбутен-2 (основной продукт)} \\ & \xrightarrow{\text{4}} & \text{3} & \text{2} & 1 \\ & \xrightarrow{\text{CH}_2\text{-CH-CH=CH}_2} \\ & \text{Br} & \text{Br} \\ & \text{3,4-дибромбутен-1 (примесь)} \end{array}$$

1,2-присоединение: -80°C, гексан

При избытке брома тетрабромбутана обесцвечивается). образуется (бромная

1,2,3,4вода

б) Полимеризация

$$n$$
CH $_2$ =CH—CH=CH $_2$ $\xrightarrow{p, t, \text{ Na}}$ (—CH $_2$ —CH=CH—CH $_2$ —) $_n$ полибутадиен бутадиеновый каучук

$$nCH_2 = C - CH = CH_2 \xrightarrow{t, P, Na} (-CH_2 - C = CH - CH_2 -)_n$$
 CH_3
 CH_3
 $U30преновый каучук$

Полимеризация диеновых углеводородов приводит к образованию *каучуков* — полимеров, обладающих высокой эластичностью.

Горение

$$2CH2=CH-CH=CH2 + 11O2 \rightarrow 8CO2 + 6H2O$$

$$unu$$

$$2C4H6 + 11O2 \rightarrow 8CO2 + 6H2O$$

Получение алкадиенов

1. Дегидрирование алканов и алкенов (промышленный способ).

Получение алкадиенов

2. Синтез дивинила по методу

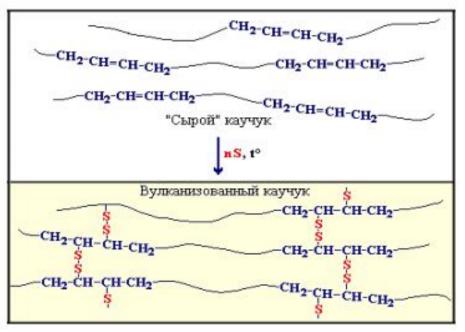
С. В. Лебедева

$$2C_{2}H_{5}OH \xrightarrow{MnO, ZnO,} CH_{2}=CH-CH=CH_{2}+2H_{2}O+H_{2}$$
 $400-500^{\circ}C$

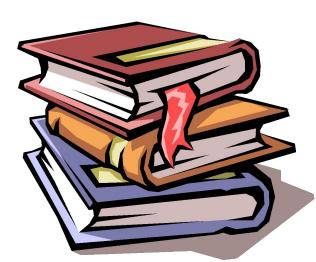
Сбор латекса из гевеи бразильской

Каучук

Натуральный каучук – твёрдое вещество, обладает водо- и газонепроницаемостью. Эластичен, имеет большую молекулярную массу (150000 – 500000).


Полимер состоит из повторяющихся звеньев $(-C_5H_8-)$ 1,4-цис-изопрена и имеет стереорегулярное строение:

в 1834 г. открыл процесс вулканизации резины.



Cha Goodpean

Вулканизация каучука - процесс получения резины из каучука (нагревание каучука и 2-3% серы). Резина более эластична (сетчатая структура).

Эбонит – содержание серы более 30%, не обладает эластичностью и представляет собой твердый материал.

