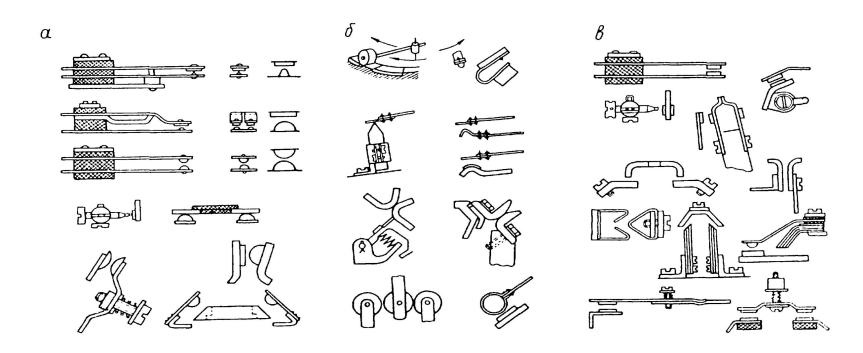


Контакты, контактные материалы, припои и флюсы

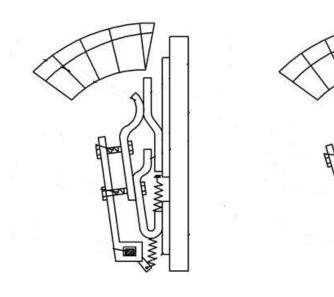

Электрические контакты — это соприкасающиеся поверхности материалов, обладающие электропроводностью и соединяющие между собой несколько токоведущих элементов в электрической

Слово «контакт» означает «соприкосновение», «касание».

По форме контакты бывают:

- **А) Точеные**, они, в основном, используются для малых токов, при этих контактах происходит небольшое нажатие, а для того, чтобы уменьшить сопротивление контактов, применяются не окисляющиеся драгоценные металлы;
- **Б) Линейные**, с большой степенью нажатия и контактированием по линии, для производства этих контактов используется медь;
- В) Поверхностные, применяются с большой степенью нажатия для контактирования при больших токах между двух поверхностей

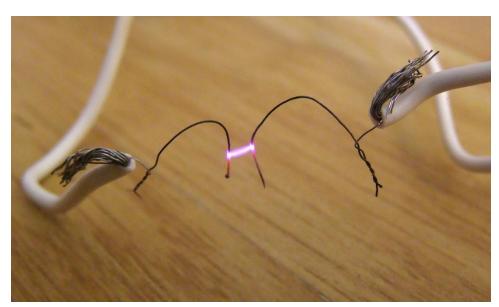
Электрические контакты бывают **неподвижные** и **подвижные**.


Неподвижные контакты — разного рода разъемные и неразъемные, предназначены для длительного соединения проводников. Разъемные контакты осуществляются зажимами, болтами, винтами и т. п., неразъемные — пайкой, сваркой или

Подвижные контакты делятся на **разрывные** (контакты реле, кнопок, выключателей, контакторов и т. п.) и **скользящие** (контакты между коллектором и щетками, контакты коммутаторов, потенциометров и т. п.).

<u>Разрывные</u> <u>контакты</u>

Они испытывают различные виды износа:


Механический износ контактов от механических воздействий проявляется в их истирании, деформации и

Электрический износ связан с возникновением электрических разрядов (дуги), искрением, оплавлением, испарением и переносом металла с одного контакта на другой. Совокупность этих явлений называется элогией

называется **эрозией**. **Химический износ** - это коррозионный износ в результате химического взаимодействия с окружающей средой. Коррозия сопровождается образованием непроводящих пленок на контактных поверхностях, что может вызвать частичное или полное нарушение проводимости контактов.

Требования к разрывным контактам:

- 1. устойчивость против коррозии, для чего необходим высокий электродный потенциал, малое химическое сродство к компонентам среды, низкая прочность оксидных пленок;
- 2. высокая дугостойкость, стойкость к свариванию и электрической эрозии, что обеспечивается высокой температурой плавления, высокой твердостью и износостойкостью;
- 3. высокая электро- и теплопроводность.

Скользящие контакты

К скользящим контактам относят подвижные контакты, в которых контактирующие элементы скользят друг по другу без отрыва: это контакты между кольцами, коллекторными пластинами и щетками в

электрических машинах и т.д.


Основное требование - стойкость к истирающим нагрузкам при сухом трении. Износостойкость при трении связана со свойствами пары контактов: чтобы избежать заедания, один контакт должен быть тверже другого, причем мягкий контакт достаточно пластичным без склонности к наклепу. Этому требованию в наибольшей степени удовлетворяют контактные пары металл-графит.

Зажимные

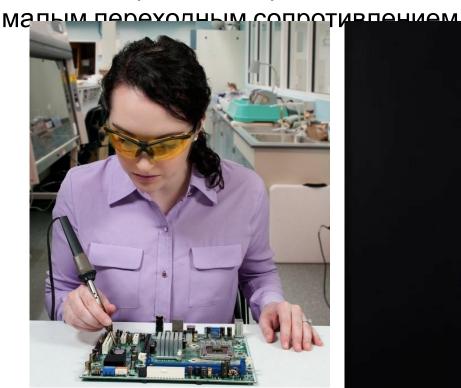
контакты Представляют собой различного рода зажимы, клеммы, болтовые и винтовые соединения проводников, а также различные штепсельные разъемы типа вилка - розетка.

При соприкосновении контактов возникает переходное сопротивление, которое зависит от состояния контактирующих поверхностей, контактного давления и твердости материала.

Переходное сопротивление - характеризует количество энергии, поглощаемой в контактном соединении, которая переходит в теплоту и нагревает контакт.

Требования к зажимным контактам:

- 1. малое и стабильное переходное сопротивление, что обеспечивается малым удельным сопротивлением материала и невысокой твердостью;
- 2. коррозионная стойкость материала, не образующего на контактной поверхности оксидных пленок.



Основными материалами для зажимных контактов являются медь, латуни, цинк, стали. Контактные поверхности подвергают шлифованию и покрывают мягкими коррозионностойкими металлами: оловом, цинком, кадмием, серебром.

<u> Цельнометаллические</u>

контакты Соединения проводников путем пайки или сварки. *Припои* - специальные сплавы, используемые при пайке, для создания прочного, герметичного шва и электрического контакта с

Выбор припоя производят в зависимости от таких факторов: от соединяемых металлов или сплавов, от способа пайки, от температурных ограничений, от размера деталей, от требуемой механической прочности, от коррозийной стойкости и др.

Тугоплавкие

К тугоплавким относятся припои с температурой плавления свыше 500 °С, создающие очень высокую механическую прочность соединения. В составе тугоплавких припоев можно встретить много меди, серебра, никеля или магния.

Co	став и т	емперат	гуры пл	авления	сереб	ряных		аблица 7 в
Припой		Температур- ный диапа-						
	Ag	Cu	Zn	Cd	Mn	Ni	Mg	зон плавле- ния припоя, °C
Серебряный Серебряно-	63	27	10	-	_	_		700—730
кадмиевый То же	45 37	25 38	15 15	15 0,5	<u>-</u> 512	4,0	0,3	620—660 800—850

Недостатком тугоплавких припоев является то, что они требуют высокой температуры нагрева, и хотя прочность такой пайки весьма высока, интенсивный нагрев может привести к весьма нежелательным последствиям: можно перегреть дорогостоящую деталь и вывести ее из строя (например, транзистор или микросхему)

<u>Легкоплавкие</u>

К этой категории относятся припои с температурой плавления до 400 °С, имеющие сравнительно невысокую механическую прочность. При радиотехнических монтажных работах применяются главным образом легкоплавкие припои. В их состав входят олово и свинец в различных пропорциях, например, припой ПОС-61, который содержит 61% свинца, 38 % олова и 1% различных присадок.

Марка припоя	Содел	Содержание элементов. %				ратура ления	Временное сопротивление	Область применения
	Sn	Sb	Cu	As	Солидус	Ликвидус	разрыву, кгс/мм ²	
ПОС-90	89-91	0.05	0.05	0,02	183	220	4,9	Лужение и пайка пищевой посуды и медицинской аппаратуры
ПОС-61	59-61	0,05	0,05	0,03	183	190	4,3	Лужение и пайка электро- и радиоаппаратуры, точных приборов
ПОС-40	39-41	0,05	0,05	0,03	183	238	3,8	Лужение и пайка электроаппаратуры, деталей из оцинкованного железа
ПОС-10	9-10	0,05	0,05	0,03	268	299	3,2	Лужение и пайка контактных поверхностей электроаппаратов, приборов, реле
ПОССУ-61-0,5	59-61	0,05-0,5	0,08	0,03	183	189	4,5	Лужение и пайка электроаппаратуры при жестких требованиях к температуре
ПОССУ-40-0,5	39-41	0,05-0,5	0,08	0,03	183	235	4.0	Лужение и пайка жести, обмоток электромашин. Пайка монтажных элементов, кабельных изделий, трубок радиаторов

Сверхлегкоплавкие припои

Сплавы, в состав которых, кроме олова и свинца, входят висмут и кадмий. Эти сплавы наиболее легкоплавкие: у некоторых из них температура плавления менее 100 °C. Механическая прочность соединения у таких сплавов весьма невелика. В настоящее время легкоплавкие кадмий-висмутовые сплавы находят применение при

ιжа.

Таблица 11.1 Припон с высоким содержанием висмута

T	Хи	мический с	Температура		
Припой	Bi	Pb	Şn	Cd	плавления, °С
Сплав Вуда	50	25	12,5	12,5	60,5
Сплав Розе	50	25	25		94
Сплав Д'Арсенваля	45,3	45,1	9,6		79
Сплав Липовица	50	26,67	13,33	10	
ПОСВ33	33,3	33,4	33,3	_	130

Флюс - это вспомогательное вещество, необходимое для освобождения поверхностей спаиваемых деталей от окислов и лучшему растеканию припоя по поверхности металла при пайке. Без применения флюса выполнить паяльником качественную пайку практически не возможно.

некоторые типы ф	Таблица 7.2			
Coct	газ флюса	Основные характеристики и область применения	Способ удаления остатков Протирка спиртом или бензином 5-70	
Бескислотные флюсы	Канифоль	Применяется для пайки радио- и электромонтажных соединений легкоплавкими припоями		
	Флюс КЭ: канифоль — 1528%, остальное этиловый спирт	Назначение то же, но более удобен при пайке труднодоступных мест	то же	
Активированный Флюс	Флюс ЛТИ-120: спирт этиловый 637 4%, канифоль — 2025%, диэтиламин соляно-кислый — 12%	Пайка железа, стали, цинка, никеля, меди, оксидных деталей из медных сплавов без предварительной зачистки	то же	

